Respuestas
formula euler es lomas resumido que pude hacerlo:
{\displaystyle {\begin{aligned}e^{iz}&{}={\frac {(iz)^{0}}{0!}}+{\frac {(iz)^{1}}{1!}}+{\frac {(iz)^{2}}{2!}}+{\frac {(iz)^{3}}{3!}}+{\frac {(iz)^{4}}{4!}}+{\frac {(iz)^{5}}{5!}}+{\frac {(iz)^{6}}{6!}}+{\frac {(iz)^{7}}{7!}}+{\frac {(iz)^{8}}{8!}}+\cdots \\&{}={\frac {z^{0}}{0!}}+i{\frac {z^{1}}{1!}}-{\frac {z^{2}}{2!}}-i{\frac {z^{3}}{3!}}+{\frac {z^{4}}{4!}}+i{\frac {z^{5}}{5!}}-{\frac {z^{6}}{6!}}-i{\frac {z^{7}}{7!}}+{\frac {z^{8}}{8!}}+\cdots \\&{}=\left({\frac {z^{0}}{0!}}-{\frac {z^{2}}{2!}}+{\frac {z^{4}}{4!}}-{\frac {z^{6}}{6!}}+{\frac {z^{8}}{8!}}-\cdots \right)+i\left({\frac {z^{1}}{1!}}-{\frac {z^{3}}{3!}}+{\frac {z^{5}}{5!}}-{\frac {z^{7}}{7!}}+\cdots \right)\\&{}=\cos(z)+i\sin(z)\end{aligned}}}{\displaystyle {\begin{aligned}e^{iz}&{}={\frac {(iz)^{0}}{0!}}+{\frac {(iz)^{1}}{1!}}+{\frac {(iz)^{2}}{2!}}+{\frac {(iz)^{3}}{3!}}+{\frac {(iz)^{4}}{4!}}+{\frac {(iz)^{5}}{5!}}+{\frac {(iz)^{6}}{6!}}+{\frac {(iz)^{7}}{7!}}+{\frac {(iz)^{8}}{8!}}+\cdots \\&{}={\frac {z^{0}}{0!}}+i{\frac {z^{1}}{1!}}-{\frac {z^{2}}{2!}}-i{\frac {z^{3}}{3!}}+{\frac {z^{4}}{4!}}+i{\frac {z^{5}}{5!}}-{\frac {z^{6}}{6!}}-i{\frac {z^{7}}{7!}}+{\frac {z^{8}}{8!}}+\cdots \\&{}=\left({\frac {z^{0}}{0!}}-{\frac {z^{2}}{2!}}+{\frac {z^{4}}{4!}}-{\frac {z^{6}}{6!}}+{\frac {z^{8}}{8!}}-\cdots \right)+i\left({\frac {z^{1}}{1!}}-{\frac {z^{3}}{3!}}+{\frac {z^{5}}{5!}}-{\frac {z^{7}}{7!}}+\cdots \right)\\&{}=\cos(z)+i\sin(z)\end{aligned}}}