AYUUUUUDA PORFASS! se Los agradeceria​

Adjuntos:

Respuestas

Respuesta dada por: msanpedrojorgep9vtr3
0

En todos lo problemas hay usar teoria de exponentes

a)

 =  \sqrt[5]{5 {}^{25} }  \\  =  {5  }^{ \frac{25}{5} }  \\   = {5}^{5}

b)

 =  \sqrt[12]{ {z}^{18} {y}^{16}  }  \\  =  {z}^{ \frac{18}{12} }  {y}^{ \frac{16}{12} }  \\  =  {z}^{ \frac{3}{2} } {y}^{ \frac{4}{3} }  \\  =   \sqrt{ {z}^{3} }  \times  \sqrt[3]{ {y}^{4} }

c)

 =  \sqrt[3]{48}  \\  =  \sqrt[3]{ {2}^{3}  \times 6}  \\  = 2 \sqrt[3]{6}

d)

 =  \sqrt{50a {}^{2}b {}^{5}  }  \\  = 5a \sqrt{2 \times b {}^{5} }

e)

 =  \sqrt[8]{ {3}^{4} {y}^{24}  {z}^{32}  }  \\  =  \sqrt{3}   \times {y}^{3}  \times  {z}^{4}

f)

 =  \sqrt[3]{81 {x}^{3}  {y}^{4} }  \\  = x \sqrt[3]{ {3}^{3}  \times 3 \times  {y}^{4} }  \\  = 3x \sqrt[3]{3 {y}^{4} }

g)

 =  \sqrt[15]{ {2}^{5} {x}^{10}  }  \\  =  \sqrt[3]{2}  \times  \sqrt[3]{ {x}^{2} }  \\ =   \sqrt[3]{2x {}^{2} }  \\

h)

 =  \sqrt[5]{ \frac{ {a}^{13} }{24x {}^{2} } }  \\  =  \sqrt[5]{ \frac{a {}^{10}  \times  {a}^{3} }{24x {}^{2} } }  \\  =  {a}^{2}  \times  \sqrt[5]{ \frac{a {}^{3} }{24x {}^{2} } }

i)

 =  \sqrt{ \frac{27 {a}^{6} m {}^{3}  {n}^{2} }{392 {b}^{9} {c}^{2}  } }  \\  =  \sqrt{ \frac{9 \times 3 \times a {}^{6}  \times m {}^{3} \times n {}^{2}  }{49 \times 4 \times 2 \times b {}^{9} \times  {c}^{2}  } }  \\  =  \frac{3 {a}^{3} n}{7 \times 2 \times c}  \times  \sqrt{ \frac{3 {m}^{3} }{2 {b}^{9} } }  \\  =  \frac{3 {a}^{3} n}{14c}  \sqrt{ \frac{3m {}^{3} }{2b {}^{9} } }

j)

 =  \sqrt[6]{ \frac{ {a}^{19}  {b}^{174} }{ {c}^{32}d {}^{167} 256 } } \\  =   \sqrt[6]{ \frac{ {a}^{18} \times a \times  {b}^{29 \times 6}  }{ {c}^{30} \times  {c}^{2}  \times  {d}^{162}  \times  {d}^{5}   \times  {2}^{6} \times  {2}^{2}  } }  \\  =  \frac{a {}^{3}  {b}^{29} }{ {2c}^{5}  {d}^{27}  }  \times  \sqrt[3]{ \frac{1}{2c} }  \times  \sqrt[6]{ \frac{a}{ {d}^{5} } }

Preguntas similares