• Asignatura: Matemáticas
  • Autor: rositagarcia22
  • hace 10 años

Ayuda con el Sistemas de 2 ecuaciones con 2 variables con 2 incógnitas Por favor

 1. Pedro llevo a sus amigos a la finca de su papá. Cortó un racimo de bananos y cada uno de sus amigos se comió 3, quedando todavía 8 bananos en el racimo. Si cada uno de sus amigos se hubiera comido 4 bananos, entonces habrían hecho falta 6 bananos. ¿Cuantos bananos tenia el racimo y cuantos eran sus amigos.

 

2. Para recorrer 21 km. río abajo y luego regresar al punto de partida, los tripulantes de una lancha emplean 3 horas con 20 minutos. Además para remar 6 km. río arriba emplean el mismo tiempo que en remar 14 km. río abajo. Encuentra la velocidad de la lancha en aguas tranquilas y la velocidad de las aguas del río.

Respuestas

Respuesta dada por: bellacuore
3

1)

siendo x = el numero de bananos en el racimo

siendo y = el numero de amigos

 

planteamos las ecuaciones

(1)x - 3y =  8

(2)x - 4y = -6  (-1) <-- se multiplica por -1 para eliminar x 

    --------------

     x - 3y = 8

    -x +4y = 6

     --------------

            y = 14 --> numero de amigos

 

remplazas la variable en una de las dos ecuaciones (1) o (2)

 

x -3y = 8  

x - 3(14) = 8

x - 42 = 8

x = 8 + 42

x = 50 --> numero de bananos en el racimo

 

el 2do no lo entendi

Respuesta dada por: preju
0

Hago el segundo porque el primero veo que ya te lo han resuelto.

 

Paso el tiempo que está en forma compleja a incompleja --->  20 minutos : 60 = 0,33

El tiempo será pues de 3,33 horas.

 

La fórmula que relaciona Distancia, Velocidad y Tiempo dice:

Distancia = Velocidad · Tiempo ... despejando el Tiempo...

Tiempo = Distancia / Velocidad

 

Llamo " vl " a la velocidad de la lancha

y llamo "vr" a la velocidad del río

 

Yendo río abajo, está claro que las velocidades tendrán que sumarse y yendo río arriba deberán restarse.

 

Luego, el tiempo total empleado (3,33 horas) será igual a la suma de los tiempos parciales invertidos en bajar y subir al punto de partida.

 

Tiempo = Distancia / (vl+vr) + Distancia / (vl-vr) ... sustituyendo valores...

 

3,33 = 21 / (vl+vr) + 21 / (vl-vr) ... y aquí tenemos la 1ª ecuación del sistema.

 

Fijémonos ahora en la 2ª parte del enunciado:

"...para remar 6 km. río arriba emplean el mismo tiempo que en remar 14 km. río abajo"

 

Río arriba emplearán un tiempo de:

Tiempo = 6·(vl-vr) ... diferencia de velocidades ya que va contracorriente.

 

Río abajo emplearán un tiempo de:

Tiempo = 14·(vl+vr) ... suma de velocidades porque va corriente a favor.

 

Como los tiempos son iguales, puedo igualar también el otro lado y queda:

6·(vl-vr) = 14·(vl+vr) ... segunda ecuación del sistema.

 

Ahora sólo queda resolverlo pero eso ya de lo dejo a ti porque es otro tema y ya me he extendido suficiente, creo.

 

MI objetivo es que entiendas el planteamiento.

 

Saludos.

 

Preguntas similares