El área total de un cilindro recto de revolución es 18pcm2. Luego, el volumen en centímetros cúbicos de la esfera inscrita en dicho cilindro es:
Respuestas
Respuesta dada por:
2
El volumen de la esfera en centímetros cúbicos es de 3.94 cm³.
Area del cilindro = 2πr(h+r) = 18 cm²
h: altura
r: radio
Volumen de una esfera
Volumen = 4π/3 *r³
El radio del cilindro es igual al radio de la esfera porque la esfera esta inscrita en el cilindro.
y la altura del cilindro es dos veces el radio, es decir
h = 2r
Sustituir h en el area del cilindro
2πr(2r+r) = 18 cm²
4πr² + 2πr² = 18cm²
6πr² = 18 cm ²
Despejar r
r = √(18/6π)
r = 0.98 cm
Sustituir r en el volumen de la esfera
Volumen = 4π/3 *0.98³
Volumen = 3,94 cm³
Adjuntos:
Preguntas similares
hace 6 años
hace 8 años
hace 9 años
hace 9 años