Si 2^a . 2^b . 2^c = 256, ¿cuál es el promedio entre a, b y c?A) 256/3B) 8/3C) 128D) 8E) Indeterminable con los datos dados


#PSU

Respuestas

Respuesta dada por: carbajalhelen
55

El promedio entre a, b y c es:

Opción B) 8/3

Explicación:

Datos;

2^{a}. 2^{b}.2^{c}=256

Aplicar propiedades de los exponentes;

a^{b}. a^{c}=a^{b+c}

Sustituir;

2^{a}. 2^{b}.2^{c}=2^{a+b+c}

256 = 2^{8}

2^{a+b+c}= 2^{8}

Por lo tanto, la suma de los exponentes es;

a + b + c = 8

Aplicar promedio;

\frac{a+b+c}{3}=\frac{8}{3}

Preguntas similares