urgente ayuda no entiendo..
En un grupo de 30 estudiantes perteneciente a un curso, 15 no estudiaron Matemáticas y 19 no estudiaron Lenguaje. Si tenemos un total de 12 alumnos que no estudiaron Lenguaje ni Matemáticas.
1) representa la información en un diagrama de venn
2)responde a las siguientes preguntas de probabilidad
2.1 ¿cual el la probabilidad de que escogiendo un alumno al azar solo haya estudiado lengua?
2.2 ¿cual el la probabilidad de que escogiendo un alumno al azar solo haya estudiado las dos asignaturas?
2.3 ¿cual el la probabilidad de que escogiendo un alumno al azar solo haya estudiado mates?
2.4 ¿cual el la probabilidad de que escogiendo un alumno al azar no haya estudiado ni mates ni lengua?
Respuestas
Respuesta:
Probabilidad de solo lenguaje = P(SL) = 1/10
Probabilidad de haber estudiado las dos asignaturas = 4/15
Probabilidad de solo matemáticas = P(SM) = 7/30
Probabilidad de no matemáticas , no lenguaje = 2/5
Explicación paso a paso:
Te dejo gráfica en la parte inferior para mayor comprensión del problema
Datos.
U = 30
Estudian matemáticas = M
Estudian lenguaje = L
No estudian matemática = 15
No estudian lenguaje = 19
No estudian matemáticas ni lenguaje = 12
Estudian matemáticas y lenguaje = M∩L = x
Estudian solo matemáticas = No estudiaron lenguaje - los que no
estudiaron ninguna de las dos
Estudian solo matemáticas = 19 - 12 = 7
Estudian solo lenguaje = No estudian matemática - no estudian
ninguna de las dos
Estudian solo lenguajes = 15 - 12 = 3
De la gráfica.
7 +x + 3 + 12 = 30
x + 22 = 30
x = 30 - 22
x = 8
Estudian matemáticas y lenguaje = M∩L = 8
Formula.
Probabilidad = Casos favorables /Casos Posibles
Probabilidad de estudiar solo lenguaje P(SL)
P(SL) = Estudian solo lenguaje/U
P(SL) = 3/30 Simplificas
P(SL) = 1/10
Probabilidad de dos asignatura = P(M∩L)
P(M∩L) = (M∩L)/U
P(M∩L) = 8/30 Simplificas sacas mitad
P(M∩L) = 4/15
Probabilidad de estudiar solo matemáticas = P(SM)
P(SM) = Estudian solo matemáticas/U
P(SM) = 7/30
Probabilidad de no matemáticas . No lenguaje = P(NML)
P(NML) = No estudian ni matemáticas ni lenguaje/U
P(NML) = 12/30 Simplificas sacas 6ta
P(NML) = 2/5