ejercicio resolver porfa​

Adjuntos:

Respuestas

Respuesta dada por: MaqueraRivasLuisArtu
1

Hola!

Respuesta:

x = 2

Explicación paso a paso:

 \frac{(a + b)x}{a - b}  +  \frac{ax}{a + b}  -  \frac{a - b}{a + b}  =  \frac{ax}{a - b}  +  \frac{ {(a + b)}^{2} }{ {a}^{2} -  {b}^{2}  }  \\  \frac{x{(a + b)}^{2}  + ax(a - b)}{ {a}^{2} -  {b}^{2}  }  - \frac{ {(a + b)}^{2} }{ {a}^{2} -  {b}^{2}  } =  \frac{ax}{a - b}  +  \frac{a - b}{a + b}  \\  \frac{x {(a + b)}^{2} + ax(a - b) -  {(a + b)}^{2}  }{ {a}^{2} -  {b}^{2}  }  =  \frac{ax(a + b) +  {(a - b)}^{2} }{ {a}^{2} -  {b}^{2}  }  \\  {(a + b)}^{2} (x - 1) + ax(a - b) - ax(a + b) -  {(a - b)}^{2}  = 0 \\ (a + b)((a + b)(x - 1) - ax) + (a - b)(ax - (a - b)) = 0 \\ (a + b)(ax - a + bx - b - ax)  + (a - b)(ax - a + b) = 0 \\ (a + b)(bx - a - b) + ( {a}^{2} x -  {a}^{2}  + ab - abx + ab -  {b}^{2} ) = 0 \\ abx -  {a}^{2}  - ab +  {b}^{2} x - ab -  {b}^{2}  + {a}^{2} x -  {a}^{2}  + ab - abx + ab -  {b}^{2} ) = 0 \\  - 2 {a}^{2}  +  {b}^{2} x - 2 {b}^{2}  +  {a}^{2} x = 0 \\ x( {a}^{2}   + {b}^{2} ) = 2( {a}^{2}  +  {b}^{2} ) \\ x = 2


arian30: Te lo agradezco tengo otro .... podroas ayudarme ??
Preguntas similares