El triángulo oblicuángulo ABC a=27.34, b=23.09 y c=33.25, calcule los ángulos A,B y C

Respuestas

Respuesta dada por: maeddepe
1

Respuesta:

Explicación paso a paso:

a: lado opuesto al ángulo A

b: lado opuesto al ángulo B

c: lado opuesto al ángulo C

Teorema del coseno

cos(A)=(b^2+c^2-a^2)/(2bc)=(23.09^2+33.25^2-27.34^2)/(2×23.09×33.25)=0.58042

A=54° 31'

cos(B)=(a^2+c^2-b^2)/(2ac)=(27.34^2+33.25^2-23.09^2)/(2×27.34×33.25)=0.72597

B=43° 27'

C=180-A-B=180°-54° 31'-43° 27'

C=82° 2'

Preguntas similares