Hallar tres números enteros consecutivos ,tales que la suma de los cuadrados de los dos menores sea igual al cuadrado del mayor ,mas doce unidades


Flyleaf4: Por favor ayuden la necesito para mañana :3
rayden64: ok

Respuestas

Respuesta dada por: rayden64
5

Respuesta:

si piden enteros positivos es: 5 , 6 , 7

si piden enteros negativos : -3 , -2 , -1

Explicación paso a paso:

  "x"  → Primer número

   x+1 →  Segundo número

   x+2 → Tercer número

Cuadrados de los números :            

x^2

( x+1)^2  

( x+2)^2                  

solución:

 x^2  + ( x+1)^2  = ( x+2)^2 + 12      

 x^2 + x^2 + 2(x)(1) + 1^2 = x^2 + 2(x)(2) + 2^2 + 12

   2x^2 + 2x + 1 = x^2 + 4x +4 + 12

       2x^2 - x^2  + 2x - 4x =  16 - 1

             x^2  - 2x = 15  

              x^2  - 2x - 15 =0          → usamos el método de  aspa

              x              -5                                            

              x              +3        

         (x - 5 )( x+3) = 0

    x - 5 = 0     ∧      x + 3= 0

    x= 5                    x = -3        → Tomamos el valor positivo de "x"

remplazamos el valor de "x"

      x"  → 5

   x+1 →  6

   x+2 →  7

comprobación :

5^2 + 6^2 = 7^2 + 12

25 + 36  = 49 +12

     61 = 61

Tomamos el valor negativo  de "x"

remplazamos el valor de "x"

      x   →   -3

   x+1 →  -3 +1 = -2

   x+2 → -3 +2 = -1

comprobación :

(-3)^2 + (-2)^2 = (-1)^2 + 12

   9  +  4   = 1 + 12

     13    =    13

           

   

Preguntas similares