Por favor si me ayudan con esto, gracias.

Adjuntos:

Respuestas

Respuesta dada por: oskarsian96
1

Respuesta:

Explicación paso a paso:

25.

cot(-\alpha )cos(-\alpha )+sen(-\alpha)=-csc(\alpha)\\\\\frac{cos(-\alpha)}{sen(-\alpha)}cos(-\alpha)+sen(-\alpha) = \frac{1}{-sen(\alpha )}\\\\\frac{cos(-\alpha)*cos(-\alpha)+sen(-\alpha)*sen(-\alpha)}{sen(-\alpha)}=\frac{1}{-sen(\alpha )}\\\\cos^2(-\alpha )+sen^2(-\alpha )=\frac{sen(-\alpha )}{-sen(\alpha )}\\\\\\cos^2(-\alpha )+sen^2(-\alpha )=1\\sen(-\alpha )=-sen(\alpha)\\\\\\1=\frac{-sen(\alpha )}{-sen(\alpha )}\\\\1=1

26.

\frac{tan(x)+tan(y)}{cot(x)+cot(y)}=tan(x)tan(y)\\\\\\cot(x)=\frac{1}{tan(x)}\\cot(y)=\frac{1}{tan(y)}\\\\\\\\\frac{tan(x)+tan(y)}{\frac{1}{tan(x)}+\frac{1}{tan(y)}} =tan(x)tan(y)\\\\\\\frac{tan(x)+tan(y)}{\frac{tan(y)+tan(x)}{tan(x)tan(y)}}=tan(x)tan(y)\\\\\\\frac{[tan(x)+tan(y)]tan(x)tan(y)}{tan(x)+tan(y)} =tan(x)tan(y)\\\\\\tan(x)tan(y)=tan(x)tan(y)

Preguntas similares