Halla el volumen de un cubo cuya diagonal mide 7 raíz cuadrada 3cm.​

Respuestas

Respuesta dada por: Anónimo
9

Respuesta:

629.42 \:  {cm}^{3}  \: (aproximadamente)

Explicación paso a paso:

(Ver dibujo)

Donde:

a: Arista(lado) del cubo

Entonces, se aplica el Teorema de Pitágoras para hallar "a":

 {(7 \sqrt{3}) }^{2}  =  {(a)}^{2}  +  {(a)}^{2}  \\ 49 \times 3 =  {a}^{2}  +  {a}^{2}  \\ 147 = 2 {a}^{2}  \\ \frac{147}{2}  =  {a}^{2}  \\ 73.5 =  {a}^{2}  \\  \sqrt{73.5}  = a \\ 8.57 = a \\ a = 8.57 \: (aproximadamente)

Luego, para un cubo:

Volumen =

 {a}^{3}

Reemplazando:

Volumen =

 {a}^{3}  =  {(8.57)}^{3}  = 629.42 \: (aproximadamente)

Adjuntos:

marta6814: como se hace eso
Anónimo: Corrección: Para un prisma: Área total = El doble del Área de la base + Área lateral
Anónimo: Para una pirámide: Área total = Área de la base + Área lateral
Anónimo: Para un tetraedro regular: Área total = Arista al cuadrado × Raíz cuadrada de 3
Anónimo: Para hallar el área de una de las caras de un cubo, es hallar el área de un cuadrado. Ya que un cubo está formado por 6 cuadrados. Así que la el área de la cara de un cubo es igual a la Arista al cuadrado.
marta6814: ya con lo que me mandaste ya lo puedo resolver
marta6814: ??
Anónimo: Así es.
marta6814: Muchas gracias
Anónimo: Ok, de nada :)
Preguntas similares