Un tren de alta velocidad recorre 1800 km a velocidad constante en un lapso “t”. Si disminuye su velocidad en un 25%, tarda tres horas más que en la circunstancia anterior para recorrer la misma distancia (siempre a velocidad constante).
Calcular la velocidad desarrollada y el tiempo empleado en los dos casos planteados.
Respuestas
La velocidad del tren es de 200km/h y el tiempo que emplea es 9 h.
Para poder resolver este problema, debemos saber que la velocidad se define como la relación entre el espacio recorrido y el tiempo que se tarda en recorrerlo:
Las unidades en las que deben ir las variables son:
v en km/h
e en km
t en horas
Si quisieras transformar la velocidad que vamos a obtener a m/s, puedes ayudarte del siguiente enlace: https://brainly.lat/tarea/388599
De acuerdo con la información del problema:
Reducir la velocidad un 25% es lo mismo que decir que se mueve a un 75% de su velocidad inicial; por eso, en esta segunda ecuación, multiplicamos por 0.75*v.
Como en la primera ecuación tenemos v despejada, resolveremos el sistema de ecuaciones por el método de sustitución:
Para que sea más sencillo despejar t, utilizamos las propiedades de las fracciones:
1350*(t+3) = 1800*t
1350*t + 4050 = 1800*t
4050 = 1800*t - 1350*t
4050 = 450*t
t = 9 horas
Por último, para obtener la velocidad, utilizamos la primera ecuación:
v = 200 km/h