Amigos ayuda urgente xfa
determina la ecuación en la forma ax2+bx+c de la parábola que pasa por los puntos siguientes:p1(2,0)p2 (0,4) y p3 (5,0) con gráfica y nota:sin punto decimal gracias se los agradecería si fuera rápido
Respuestas
La ecuación de la parábola que pasa por los puntos P1(2,0), P2(0,4) y P3(5,0) es: y= 2/5 x² -14/5 x +4
Datos:
P1(2,0)
P2(0,4)
P3(5,0)
Explicación:
Para hallar la ecuación de la parábola, se reemplazan los valores de "x" y "y" de cada punto en la ecuación general y= ax²+bx+c, así:
P1( 2,0)
x=2
y=0
0=a(2)²+b(2)+c
0=4a+2b+c (1)
P2( 0,4)
x=0
y=4
4=a(0)²+b(0)+c
4=c (2)
P3( 5,0)
x=5
y=0
0=a(5)²+b(5)+c
0=25a+5b+c (3)
Reemplazando (2) en (1) y en (3) se tiene:
(1) 0=4a+2b+c
4a+2b+4=0 →Ec. 1
(3)0=25a+5b+c
25a+5b+4=0 →Ec. 2
Resolviendo la Ec. 1 y Ec. 2 se tiene que:
a= 2/5
b=-14/5
Por lo tanto a= 2/5, b=-14/5 y c=4 y reemplazándolos en la ecuación general, quedaría:
y= 2/5 x² -14/5 x +4
Puedes profundizar en parábolas consultando el siguiente link: https://brainly.lat/tarea/10689933