el costo C en dolares por operar cierta maquina cortadora de concreto esta realacionado con el numero n de minutos que la maquina trabaja mendiante la funcion c(n)=2..2n^2-66n+655
Respuestas
Respuesta dada por:
9
C(n) = 2.2n^2 - 66n + 655
The "n" value of the vertex can be found using the formula:
n = -b / 2a
where:
a = 2.2
b = -66
c = 655
n = -b / 2a
n = -(-66) / 2*(2.2)
n = 66 / 4.4
n = 15
Now plug (n = 15) back into the equation and solve for C(n):
C(n) = 2.2(15)^2 - 66(15) + 655?
C(n) = 2.2*(225) - 990 + 655
C(n) = 495 - 335
C(n) = 160
Running the machine for 15 minutes gives the lowest cost,
which is equal to $160 (I'm assuming dollars $ here).
I tried looking for a website that explains this little trick,
but all of them are cluttered and confusing for most folks.
Good luck in your studies,
~ Mitch ~
The "n" value of the vertex can be found using the formula:
n = -b / 2a
where:
a = 2.2
b = -66
c = 655
n = -b / 2a
n = -(-66) / 2*(2.2)
n = 66 / 4.4
n = 15
Now plug (n = 15) back into the equation and solve for C(n):
C(n) = 2.2(15)^2 - 66(15) + 655?
C(n) = 2.2*(225) - 990 + 655
C(n) = 495 - 335
C(n) = 160
Running the machine for 15 minutes gives the lowest cost,
which is equal to $160 (I'm assuming dollars $ here).
I tried looking for a website that explains this little trick,
but all of them are cluttered and confusing for most folks.
Good luck in your studies,
~ Mitch ~
Preguntas similares
hace 7 años
hace 7 años
hace 9 años
hace 9 años
hace 9 años
El valor "n" del vértice se puede encontrar mediante la fórmula:
n = -b / 2a
donde:
a = 2,2
b = -66
c = 655
n = -b / 2a
n = - (- 66) / 2 * (2.2)
n = 66 / 4.4
n = 15
Ahora conecte (n = 15) en la ecuación y resuelve para C (n):
C (n) = 2,2 (15) ^ 2-66 (15) + 655?
C (n) = 2,2 * (225) - 990 + 655
C (n) = 495-335
C (n) = 160
Ejecución de la máquina durante 15 minutos da el menor costo,
que es igual a $ 160 (estoy asumiendo dólares $ aquí).