Dados los intervalos: A = [-2, 4]; B = (-2, 4); C = ]-1, 4]; D = (-4, 6]. Determine gráfica y analíticamente:
a) A U B
b) A - B
c) B ∩ A
d) B c
e) A’
Respuestas
Respuesta:
a) A U B = [-2,-1,0,1,2,3,4]
b) A - B = [0]
c) B ∩ A = [-2,-1,0,1,2,3,4]
d) B c = 128 subconjuntos
e) A’ = [-∞,...-3,5,..,∞]
Explicación paso a paso:
a) A U B = [-2,-1,0,1,2,3,4] U [-2,-1,0,1,2,3,4] = [-2,-1,0,1,2,3,4]
b) A - B = [-2,-1,0,1,2,3,4] - [-2,-1,0,1,2,3,4] = [0]
c) B ∩ A = [-2,-1,0,1,2,3,4] ∩ [-2,-1,0,1,2,3,4] = [-2,-1,0,1,2,3,4]
d) B c = 2^7 = 128 subconjuntos
e) A’ = U-A
donde U es el universo, entonces
A’ = U-A = [-∞,∞] - [-2,-1,0,1,2,3,4] = [-∞,...-3,5,..,∞]
Respuesta:
Dados los intervalos: A=[-2,4]; B=(-2,4); C=]-1,4]; D=(-4,6)
a) A U B = [-2, -1, 0, 1, 2, 3, 4] R/.
b) A - B = [ 0 ] R/.
c) B ∩ A = [-2, -1, 0, 1, 2, 3, 4] R/.
d) B^c = 2^7 = 128 subconjuntos R/.
e) A' = [- ∞, ... -3,5 ..., ∞] R/.
Explicación paso a paso:
Dados los intervalos: A=[-2,4]; B=(-2,4); C=]-1,4]; D=(-4,6)
A = [-2, -1, 0, 1, 2, 3, 4]
B = (-2, -1, 0, 1, 2, 3, 4)
a) A U B
A U B = [-2, -1, 0, 1, 2, 3, 4] U (-2, -1, 0, 1, 2, 3, 4)
A U B = [-2, -1, 0, 1, 2, 3, 4] R/.
b) A - B
A - B = [-2, -1, 0, 1, 2, 3, 4] - (-2, -1, 0, 1, 2, 3, 4)
A - B = [ 0 ] R/.
c) B ∩ A
B ∩ A = [-2, -1, 0, 1, 2, 3, 4] ∩ [-2, -1, 0, 1, 2, 3, 4]
B ∩ A = [-2, -1, 0, 1, 2, 3, 4] R/.
d) B^c
B^c = 2^7 = 128 subconjuntos R/.
e) A'
A' = U-A U es el universo
A' = [- ∞, ∞] - [-2, -1, 0, 1, 2, 3, 4]
-2 -1 = - 3
0, 1, 2, 3, 4 son de un intervalo cerrado = 5 elementos, tenemos,
A' = [- ∞, ... -3,5 ..., ∞] R/.