me ayudan con estos ejercicios de polinomios
1)Calcula
P(x)-Q(x)=
Q(x)+R(x)=
R(X)-P(X)=
mateloca:
¿Cuáles son los polinomios P(x), Q(x) y R(x)?
Respuestas
Respuesta dada por:
1
Teniendo los polinomios
![P(x)=2x^{3} +5x^{2} -x+7 \\ Q(x)=-2 x^{3} +4 x^{2} -6x-5 \\ R(x)= x^{4} + \frac{2}{3} x^{3} -4 x^{2} + \frac{3}{4}x P(x)=2x^{3} +5x^{2} -x+7 \\ Q(x)=-2 x^{3} +4 x^{2} -6x-5 \\ R(x)= x^{4} + \frac{2}{3} x^{3} -4 x^{2} + \frac{3}{4}x](https://tex.z-dn.net/?f=P%28x%29%3D2x%5E%7B3%7D+%2B5x%5E%7B2%7D+-x%2B7+%5C%5C+Q%28x%29%3D-2+x%5E%7B3%7D+%2B4+x%5E%7B2%7D+-6x-5+%5C%5C+R%28x%29%3D+x%5E%7B4%7D+%2B+%5Cfrac%7B2%7D%7B3%7D+x%5E%7B3%7D+-4+x%5E%7B2%7D+%2B+%5Cfrac%7B3%7D%7B4%7Dx)
Resolvamos las operaciones:
![P(x)-Q(x)=2x^{3} +5x^{2} -x+7-(-2 x^{3} +4 x^{2} -6x-5) \\ \\ =2x^{3} +5x^{2} -x+7+2 x^{3} -4 x^{2} +6x+5 \qquad Agrupando \ terminos \\ \\ =\boxed{4 x^{3}+ x^{2} +5x+12} \\ \\ P(x)-Q(x)=2x^{3} +5x^{2} -x+7-(-2 x^{3} +4 x^{2} -6x-5) \\ \\ =2x^{3} +5x^{2} -x+7+2 x^{3} -4 x^{2} +6x+5 \qquad Agrupando \ terminos \\ \\ =\boxed{4 x^{3}+ x^{2} +5x+12} \\ \\](https://tex.z-dn.net/?f=P%28x%29-Q%28x%29%3D2x%5E%7B3%7D+%2B5x%5E%7B2%7D+-x%2B7-%28-2+x%5E%7B3%7D+%2B4+x%5E%7B2%7D+-6x-5%29+%5C%5C++%5C%5C+%3D2x%5E%7B3%7D+%2B5x%5E%7B2%7D+-x%2B7%2B2+x%5E%7B3%7D+-4+x%5E%7B2%7D+%2B6x%2B5+%5Cqquad+Agrupando+%5C+terminos+%5C%5C++%5C%5C+%3D%5Cboxed%7B4+x%5E%7B3%7D%2B+x%5E%7B2%7D++%2B5x%2B12%7D+%5C%5C++%5C%5C)
![Q(x)+R(x)=-2 x^{3} +4 x^{2} -6x-5+x^{4} + \frac{2}{3} x^{3} -4 x^{2} + \frac{3}{4}x \\ = x^{4}+(-2+ \frac{2}{3}) x^{3}+(-6+ \frac{3}{4})x-5 \\ \boxed{x^{4} - \frac{4}{3} x^{3} - \frac{21}{4}x-5} \\ \\ Q(x)+R(x)=-2 x^{3} +4 x^{2} -6x-5+x^{4} + \frac{2}{3} x^{3} -4 x^{2} + \frac{3}{4}x \\ = x^{4}+(-2+ \frac{2}{3}) x^{3}+(-6+ \frac{3}{4})x-5 \\ \boxed{x^{4} - \frac{4}{3} x^{3} - \frac{21}{4}x-5} \\ \\](https://tex.z-dn.net/?f=Q%28x%29%2BR%28x%29%3D-2+x%5E%7B3%7D+%2B4+x%5E%7B2%7D+-6x-5%2Bx%5E%7B4%7D+%2B+%5Cfrac%7B2%7D%7B3%7D+x%5E%7B3%7D+-4+x%5E%7B2%7D+%2B+%5Cfrac%7B3%7D%7B4%7Dx++%5C%5C++%3D+x%5E%7B4%7D%2B%28-2%2B+%5Cfrac%7B2%7D%7B3%7D%29+x%5E%7B3%7D%2B%28-6%2B+%5Cfrac%7B3%7D%7B4%7D%29x-5+%5C%5C+++%5Cboxed%7Bx%5E%7B4%7D+-+%5Cfrac%7B4%7D%7B3%7D+x%5E%7B3%7D+-+%5Cfrac%7B21%7D%7B4%7Dx-5%7D+%5C%5C+%5C%5C)
![R(x)-P(x)=x^{4} + \frac{2}{3} x^{3} -4 x^{2} + \frac{3}{4}x-(2x^{3} +5x^{2} -x+7) \\ =x^{4} + \frac{2}{3} x^{3} -4 x^{2} + \frac{3}{4}x-2x^{3} -5x^{2} +x-7 \\ = x^{4}+( \frac{2}{3}-2) x^{3}-9 x^{2} +( \frac{3}{4}+1)x-7 \\ = \boxed{x^{4} - \frac{4}{3} x^{3}-9 x^{2} + \frac{7}{4}x-7} R(x)-P(x)=x^{4} + \frac{2}{3} x^{3} -4 x^{2} + \frac{3}{4}x-(2x^{3} +5x^{2} -x+7) \\ =x^{4} + \frac{2}{3} x^{3} -4 x^{2} + \frac{3}{4}x-2x^{3} -5x^{2} +x-7 \\ = x^{4}+( \frac{2}{3}-2) x^{3}-9 x^{2} +( \frac{3}{4}+1)x-7 \\ = \boxed{x^{4} - \frac{4}{3} x^{3}-9 x^{2} + \frac{7}{4}x-7}](https://tex.z-dn.net/?f=R%28x%29-P%28x%29%3Dx%5E%7B4%7D+%2B+%5Cfrac%7B2%7D%7B3%7D+x%5E%7B3%7D+-4+x%5E%7B2%7D+%2B+%5Cfrac%7B3%7D%7B4%7Dx-%282x%5E%7B3%7D+%2B5x%5E%7B2%7D+-x%2B7%29+%5C%5C++%3Dx%5E%7B4%7D+%2B+%5Cfrac%7B2%7D%7B3%7D+x%5E%7B3%7D+-4+x%5E%7B2%7D+%2B+%5Cfrac%7B3%7D%7B4%7Dx-2x%5E%7B3%7D+-5x%5E%7B2%7D+%2Bx-7+%5C%5C+%3D+x%5E%7B4%7D%2B%28+%5Cfrac%7B2%7D%7B3%7D-2%29+x%5E%7B3%7D-9+x%5E%7B2%7D+%2B%28+%5Cfrac%7B3%7D%7B4%7D%2B1%29x-7+%5C%5C++%3D+%5Cboxed%7Bx%5E%7B4%7D+-+%5Cfrac%7B4%7D%7B3%7D+x%5E%7B3%7D-9+x%5E%7B2%7D+%2B+%5Cfrac%7B7%7D%7B4%7Dx-7%7D)
Espero te sirva :)
Resolvamos las operaciones:
Espero te sirva :)
Preguntas similares
hace 6 años
hace 6 años
hace 9 años
hace 9 años