Juan tiene $99 en billetes de 1 5 10 hay 26 billetes en total y la cantidad de billetes de 1 es el doble de la de 5 cuantas de cada clase hay
por favor me pueden ayudar con esta pregunta plis
Respuestas
Hay que plantear un sistema de ecuaciones de 2 incógnitas.
Cantidad de billetes de $5: x
Cantidad de billetes de $1: 2x
Cantidad de billetes de $10: y
x+2x+y = 26
3x+y = 26 ---> Primera ecuación.
5x+2x*1+10y = 99
7x+10y = 99 ---> Segunda ecuación.
Nos queda el siguiente sistema de ecuaciones:
3x+y = 26
7x+10y = 99
Te lo voy a resolver por sustitución.
Primero se elige una ecuación y se despeja una incógnita.
3x+y = 26
y = 26-3x ---> Se reemplazará "y" por "26-3x".
7x+10y = 99
7x+10(26-3x) = 99
7x+260-30x = 99
-23x = 99-260
x = -161/-23
x = 7
Ahora calculamos el valor de "y" tomando cualquiera de las 2 ecuaciones.
3x+y = 26
3*(7)+y = 26
y = 26-21
y = 5
Entonces:
Cantidad de billetes de $5: x = 7
Cantidad de billetes de $1: 2x = 2*7 = 14
Cantidad de billetes de $10: y = 5
RTA: Hay 7 billetes de $5, 14 de $1 y 5 de $10.
Saludos desde Argentina.