El departamento de servicio social de un determinado país está interesado en estimar el ingreso medio semestral de 1032 familias que viven en una sección de siete manzanas de una comunidad. Tomamos una muestra aleatoria simple y encontramos los siguientes resultados: n igual 54 envoltorio arriba x igual 12255 s igual 1139 El departamento nos pide que calculemos una estimación de intervalo del ingreso anual medio de las 1032 familias, de modo que pueda tener el 96% de confianza de que la media de la población se encuentra dentro de ese intervalo. Responda solo la Pregunta #2 Pregunta 1: Escriba solo el límite inferior del intervalo de confianza encontrado. Pregunta 2: Escriba solo el límite superior del intervalo de confianza encontrado. Nota: Tenga presente para sus cálculos 4 cifras después del punto; como también para el resultado, ejemplo 21.3543 no agregue espacio a este numero, como tampoco separadores de miles; se esta tomando el punto como decimal.
Respuestas
Respuesta dada por:
0
Para hallar con dicho intervalo debemos aplicar la siguiente formula:
Xn + ó - Z α/2 * σ/√n
Leyenda:
Donde Xn es la media muestral, Z α/2 el intervalo de confianza relacionado , σ la desviación típica de la media y n la muestra.
Datos:
Xn = 12255
σ = 1139
n=54
Zα/2 =2,06 según la tabla de distribución Normal
Intervalo de confianza:
(Xn)96% = Xn +- Zα/2 * σ /√n
(Xn)96% = 12255+ ó - 2,06*1139/√54
(Xn)96% = 12255 + ó - 319.29
Limite superior del intervalo: 12574.83
Limite inferior del intervalo: 11935.71
Xn + ó - Z α/2 * σ/√n
Leyenda:
Donde Xn es la media muestral, Z α/2 el intervalo de confianza relacionado , σ la desviación típica de la media y n la muestra.
Datos:
Xn = 12255
σ = 1139
n=54
Zα/2 =2,06 según la tabla de distribución Normal
Intervalo de confianza:
(Xn)96% = Xn +- Zα/2 * σ /√n
(Xn)96% = 12255+ ó - 2,06*1139/√54
(Xn)96% = 12255 + ó - 319.29
Limite superior del intervalo: 12574.83
Limite inferior del intervalo: 11935.71
Preguntas similares
hace 6 años
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años