se compro unas manzanas de 12 centavos y unas naranjas de 8 centavos. El total de frutas son 11 y cuesta 116 centavos. ¿cuantas manzanas y naranjas compro respectivamente?
Respuestas
Respuesta dada por:
1
⭐SOLUCIÓN: Se compro un total de 7 manzanas y 4 naranjas.
Este ejercicio se resuelve planteando todo como un sistema de ecuaciones, en base a la cantidad de frutas y el precio de casa una. Sean las variables:
M: manzanas
N: naranjas
✔️Por la cantidad de frutas:
M + N = 11 (I)
✔️Por el precio de cada fruta y lo pagado:
12M + 8N = 116 (II)
Despejamos N de I: N = 11 - M
Sustituimos en II:
12M + 8 × (11 - M) = 116
12M + 88 - 8M = 116
4M = 28
M = 7 → CANTIDAD DE MANZANAS
✔️CANTIDAD DE NARANJAS:
N = 11 - 7 = 4
Este ejercicio se resuelve planteando todo como un sistema de ecuaciones, en base a la cantidad de frutas y el precio de casa una. Sean las variables:
M: manzanas
N: naranjas
✔️Por la cantidad de frutas:
M + N = 11 (I)
✔️Por el precio de cada fruta y lo pagado:
12M + 8N = 116 (II)
Despejamos N de I: N = 11 - M
Sustituimos en II:
12M + 8 × (11 - M) = 116
12M + 88 - 8M = 116
4M = 28
M = 7 → CANTIDAD DE MANZANAS
✔️CANTIDAD DE NARANJAS:
N = 11 - 7 = 4
Preguntas similares
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años