Respuestas
Respuesta dada por:
66
Solución: Opción (B) → La altura de un triángulo es 4 cm mayor que el doble de su base y su área es de 120 cm²
⭐Tu ejercicio claramente está incompleto por lo cual lo adjunto como imagen, con todas las opciones que vamos a comparar.
La ecuación es: x² + 2x - 120 = 0
a: 1
b: 2
c: -120
Resolviendo tenemos:
Tomamos la solución positiva: x = 10
Planteamos el área de un triángulo:
A = base × altura/2, suponiendo que el área es 120 cm²
120 = b × h/2
240 = b × h
Si tenemos la relación de que la altura de un triángulo es 4 cm mayor que el doble de su base: h = 4 + 2b
Sustituyendo: 240 = b × (4 + 2b)
240 = 4b + 2b²
Dividimos todo entre 2:
120 = 2b + b², formamos la ecuación de segundo grado
b² + 2b - 120 = 0 → Correspondiente a la opción B
⭐Tu ejercicio claramente está incompleto por lo cual lo adjunto como imagen, con todas las opciones que vamos a comparar.
La ecuación es: x² + 2x - 120 = 0
a: 1
b: 2
c: -120
Resolviendo tenemos:
Tomamos la solución positiva: x = 10
Planteamos el área de un triángulo:
A = base × altura/2, suponiendo que el área es 120 cm²
120 = b × h/2
240 = b × h
Si tenemos la relación de que la altura de un triángulo es 4 cm mayor que el doble de su base: h = 4 + 2b
Sustituyendo: 240 = b × (4 + 2b)
240 = 4b + 2b²
Dividimos todo entre 2:
120 = 2b + b², formamos la ecuación de segundo grado
b² + 2b - 120 = 0 → Correspondiente a la opción B
Adjuntos:
Respuesta dada por:
16
Respuesta:
opcion D)
Explicación paso a paso: La altura de un triángulo es 4 cm mayor que el doble de su base y su área es de 120 cm²
Preguntas similares
hace 6 años
hace 9 años
hace 9 años
hace 9 años