El sexto termino de una progresion aritmetica es 20 y el onceavo teemino es 50. halle la diferencia. halle el primer termino de la progresion. calcule la suma de los primeros 100 terminos
Respuestas
Respuesta dada por:
16
Datos:
========
a6 = 20
a11 = 50
r = ?
a1 = ?
S100 = ?
Por Propiedad se tiene que:
--------------------------------------
a6 = a1 + 5r
20 = a1 + 5r
20 - 5r = a1
a1 = 20 - 5r ........(I)
Por Propiedad se tiene que:
---------------------------------------
a11 = a1 + 10r
50 = a1 + 10r
50 - 10r = a1
a1 = 50 - 10r ........(II)
Igualando (I) y (II)
------------------------
20 - 5r = 50 - 10r
10r - 5r = 50 - 20
5r = 30
r = 30/5
r = 6
Hallando a1 en (I)
--------------------------
a1 = 20 - 5r
a1 = 20 - 5(6)
a1 = 20 - 30
a1 = -10
Hallando la Suma de los 100 términos:
----------------------------------------------------------
S100 = (2a1 + 99r)(100)/2 Simplificando 2
S100 = (2(-10) + 99(6))(50)
S100 = (-20 + 594)(50)
S100 = (574)(50)
S100 = 28700
Respuesta:
=========
La diferencia mide 6, el primer termino equivale a -10 y la suma de los 100 primeros términos es 28700
========
a6 = 20
a11 = 50
r = ?
a1 = ?
S100 = ?
Por Propiedad se tiene que:
--------------------------------------
a6 = a1 + 5r
20 = a1 + 5r
20 - 5r = a1
a1 = 20 - 5r ........(I)
Por Propiedad se tiene que:
---------------------------------------
a11 = a1 + 10r
50 = a1 + 10r
50 - 10r = a1
a1 = 50 - 10r ........(II)
Igualando (I) y (II)
------------------------
20 - 5r = 50 - 10r
10r - 5r = 50 - 20
5r = 30
r = 30/5
r = 6
Hallando a1 en (I)
--------------------------
a1 = 20 - 5r
a1 = 20 - 5(6)
a1 = 20 - 30
a1 = -10
Hallando la Suma de los 100 términos:
----------------------------------------------------------
S100 = (2a1 + 99r)(100)/2 Simplificando 2
S100 = (2(-10) + 99(6))(50)
S100 = (-20 + 594)(50)
S100 = (574)(50)
S100 = 28700
Respuesta:
=========
La diferencia mide 6, el primer termino equivale a -10 y la suma de los 100 primeros términos es 28700
Preguntas similares
hace 6 años
hace 9 años
hace 9 años
hace 9 años