Las medidas de los lados de un triángulo equilátero cuya área aproximada es de 27.6 cm2 se hacen crecer al doble. Cual será el área del triángulo grande?
Respuestas
Respuesta dada por:
42
como es un triángulo equilátero tiene ángulos interno de 60, trazando la altura se forman dos triángulos de 30 y 60 grados y se parte el lado en la mitad. El área es: A=b*h/2, nos quedaría:
27,6=b*h/2
obtenemos la tangente de uno de los triángulos:
tan 30=(b/2)/h; despejando h=b/(2*tan 30) y se reemplaza en la ecuación del área:
27,6=b*(b/(2*tan 30))/2
27,6=(b^2)/(4*tan 30)
b^2=63,74
b=7,98 cm o aproximadamente 8 cm
se duplica el lado o base a 16 entonces, necesitamos calcular una nueva altura h
h=b/(2*tan 30); reemplazando:
h=16/(2*tan 30)=13,85 cm
Área=16*13,85/2=110,8 cm2
27,6=b*h/2
obtenemos la tangente de uno de los triángulos:
tan 30=(b/2)/h; despejando h=b/(2*tan 30) y se reemplaza en la ecuación del área:
27,6=b*(b/(2*tan 30))/2
27,6=(b^2)/(4*tan 30)
b^2=63,74
b=7,98 cm o aproximadamente 8 cm
se duplica el lado o base a 16 entonces, necesitamos calcular una nueva altura h
h=b/(2*tan 30); reemplazando:
h=16/(2*tan 30)=13,85 cm
Área=16*13,85/2=110,8 cm2
Preguntas similares
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años