TanX/Senx + cscxcotx= secxcsc2 x

Respuestas

Respuesta dada por: Rulo11111
2

 \frac{ \frac{ \sin(?) }{ \cos( \alpha ) } }{ \frac{ \sin( \alpha ) }{1} }  +  \frac{1}{ \sin( \alpha ) }  \times  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  =   \frac{1}{ \cos( \alpha ) } \times  \frac{1}{ {sin}^{2} ( \alpha )}   \\  \frac{1}{ \cos( \alpha ) }  +  \frac{ \cos( \alpha ) }{ {sin}^{2}  ( \alpha )} =  \frac{1}{ \cos( \alpha )  {sin}^{2}( \alpha ) }  \\  \frac{ {sin}^{2} ( \alpha ) +  {cos}^{2} ( \alpha )}{ \cos( \alpha ) {sin}^{2}( \alpha )  }  =  \frac{1}{ \cos( \alpha )  {sin}^{2} ( \alpha )}  \\  \frac{1}{ \cos( \alpha )  {sin}^{2}( \alpha ) }  =  \frac{1}{ \cos( \alpha )  {sin}^{2}( \alpha ) }
Al final aplicamos la identidad:
 {sin}^{2} ( \alpha ) +  {cos}^{2} ( \alpha ) = 1
Preguntas similares