Respuestas
Respuesta dada por:
46
Demostrar la siguiente identidad trigonométrica :
senx + cosx . Cotx = cscx.
Vamos aplicar las identidades recíprocas , por cociente y pitagóricas.
Tenemos.
![\boxed{Sen_{x}*Csc_{x} = 1} \\ \\ \boxed{Cot_{x}= \dfrac{Cos_{x} }{Sen_{x}}} \\ \\ \\ \boxed{Sen^{2}_{x}+Cos^{2}_{x} = 1} \boxed{Sen_{x}*Csc_{x} = 1} \\ \\ \boxed{Cot_{x}= \dfrac{Cos_{x} }{Sen_{x}}} \\ \\ \\ \boxed{Sen^{2}_{x}+Cos^{2}_{x} = 1}](https://tex.z-dn.net/?f=%5Cboxed%7BSen_%7Bx%7D%2ACsc_%7Bx%7D+%3D+1%7D+%5C%5C+%5C%5C+%5Cboxed%7BCot_%7Bx%7D%3D+%5Cdfrac%7BCos_%7Bx%7D+%7D%7BSen_%7Bx%7D%7D%7D+%5C%5C+%5C%5C+%5C%5C+%5Cboxed%7BSen%5E%7B2%7D_%7Bx%7D%2BCos%5E%7B2%7D_%7Bx%7D+%3D+1%7D++++)
![================================ ================================](https://tex.z-dn.net/?f=%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D%3D)
![Sen_{x}+ Cos_{x}*Cot_{x} = Csc_{x} \\ \\ \\ Sen_{x}+ Cos_{x}* \dfrac{Cos _{x} }{Sen_{x}} = Csc_{x} \\ \\ \\ Sen_{x}+ \dfrac{Cos^{2}_{x}}{Sen_{x}} = Csc_{x} \\ \\ \\ \dfrac{Sen^{2}_{x}+ Cos^{2} _{x}}{Sen_{x}} = Csc_{x} \\ \\ \\ \dfrac{1}{Sen_{x}} = Csc_{x } \\ \\ \\ \boxed{\boxed{Csc_{x} = Csc_{x}}}\ \checkmark Sen_{x}+ Cos_{x}*Cot_{x} = Csc_{x} \\ \\ \\ Sen_{x}+ Cos_{x}* \dfrac{Cos _{x} }{Sen_{x}} = Csc_{x} \\ \\ \\ Sen_{x}+ \dfrac{Cos^{2}_{x}}{Sen_{x}} = Csc_{x} \\ \\ \\ \dfrac{Sen^{2}_{x}+ Cos^{2} _{x}}{Sen_{x}} = Csc_{x} \\ \\ \\ \dfrac{1}{Sen_{x}} = Csc_{x } \\ \\ \\ \boxed{\boxed{Csc_{x} = Csc_{x}}}\ \checkmark](https://tex.z-dn.net/?f=+Sen_%7Bx%7D%2B+Cos_%7Bx%7D%2ACot_%7Bx%7D+%3D++Csc_%7Bx%7D+%5C%5C+%5C%5C+%5C%5C++Sen_%7Bx%7D%2B+Cos_%7Bx%7D%2A+%5Cdfrac%7BCos+_%7Bx%7D+%7D%7BSen_%7Bx%7D%7D+%3D+Csc_%7Bx%7D+%5C%5C+%5C%5C+%5C%5C+Sen_%7Bx%7D%2B+%5Cdfrac%7BCos%5E%7B2%7D_%7Bx%7D%7D%7BSen_%7Bx%7D%7D+%3D+Csc_%7Bx%7D+%5C%5C+%5C%5C+%5C%5C++%5Cdfrac%7BSen%5E%7B2%7D_%7Bx%7D%2B+Cos%5E%7B2%7D+_%7Bx%7D%7D%7BSen_%7Bx%7D%7D+%3D+Csc_%7Bx%7D+%5C%5C+%5C%5C+%5C%5C+%5Cdfrac%7B1%7D%7BSen_%7Bx%7D%7D+%3D+Csc_%7Bx+%7D+%5C%5C+%5C%5C+%5C%5C+%5Cboxed%7B%5Cboxed%7BCsc_%7Bx%7D+%3D+Csc_%7Bx%7D%7D%7D%5C+%5Ccheckmark++++++)
Es correcto el resultado :)
senx + cosx . Cotx = cscx.
Vamos aplicar las identidades recíprocas , por cociente y pitagóricas.
Tenemos.
Es correcto el resultado :)
Preguntas similares
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años