• Asignatura: Física
  • Autor: astridvatags777723
  • hace 8 años

Teorema de conservación de la cantidad de movimiento o momento lineal: Una partícula A choca elásticamente con otra partícula de masa B que inicialmente está en reposo. La partícula A que impacta tiene una rapidez inicial de v_i1 m/s (d_1) y hace una colisión oblicua con la partícula B, como muestra la Figura. Después de la colisión, la partícula A se aleja en un ángulo de θ^o (d_2) hacia la dirección de movimiento original y la partícula B se desvía a un ángulo ɸ con el mismo eje. Encuentre las magnitudes de velocidad finales de las dos partículas y el ángulo ɸ. Nota: Asuma que las partículas tienen igual masa.

Respuestas

Respuesta dada por: luismgalli
1
Un choque es elástico cuando su Energía Cinética inicial es igual a la Energía Cinética Final

P = m * V
P : Cantidad de movimiento o movimiento lineal
m: masa
V: Velocidad

Componente en el eje X

mA* VA = mA* VfA* cosα + mB * VfB * cosα

Componente en el eje Y:
VB = 0
 0 = mA* VfA* senα - mB * VfB * senα (I)

Entonces:

VA² = VfA² + VfB²   (II) (Sustituimos)
VA² = VfA ²* cos²α +VfB² * cos²α
VA² - VfA ²* cos²α  = VfB² * cos²α
VfB² * cos²α = (VA - VfA * cosα)²
VfB² * cos²α = VA
² -2VA* VfA * cosα +VfA² * cos²α

VfB² sen²α = VfA sen²α (I)

Sumamos y factorizamos:
VfB² * cos²α  + VfB² sen²α  = VA² -2VA* VfA * cosα +VfA² * cos²α +VfA sen²α 
VfB² (cos²α  + sen²α)  = VA² -2VA* VfA * cosα +VfA² (cos²α +sen²α)
VfB² =  VA² - 2VA* VfA * cosα +VfA²

VA² = VfA² + VfB²  (II)
VA² = VfA² + VA² - 2VA* VfA * cosα +VfA²
VA²- VA² = 2VfA² - 2VA* VfA * cosα
0 = 2VfA² - 2VA* VfA * cosα
2VfA² = 2VA* VfA * cosα (eliminamos los 2)
VfA² = VA* VfA * cosα
VfA² /VA * VfA = cos α
cosα = VfA / VA     
⇒  Formula para calcular el angulo

Velocidades Finales:
VfA = VA *cosα
  
VA² = VfA² + VfB² (II)
VA² = VA² *cos²α  + VfB² 
VfB = √VA² - VA² *cos²α  (Eliminamos cuadrados y factorizamos )
VfB  =VA (1 - cosα)
Preguntas similares