los seis ángulos de un hexágono están en progresión aritmética,La diferencia entre el mayor y el menor es 60º.Calcula el valor de cada angulo
Respuestas
Respuesta dada por:
50
Los seis ángulos de un hexágono están en progresión aritmética,
La diferencia entre el mayor y el menor es 60º .
Calcula el valor de cada ángulo
_______________________________________________________
Podemos saber el valor de la suma de los 6 ángulos teniendo en cuenta que el ángulo interior de cualquier polígono es suplementario del central, por tanto si el central de un hexágono mide: 360 : 6 = 60º
El ángulo interior mide 180-60 = 120º
Y multiplicando por 6 sabré el total de los seis ángulos y esto no es afectado por si los ángulos son o no son iguales:
120 × 6 = 720º
Según eso, sabemos que la suma de esos 6 ángulos que están en progresión aritmética (PA) es igual a 720º
El ángulo menor lo identifico como el primer término de la PA y lo llamo:
a₁
El ángulo mayor será el sexto término de la PA lo llamo a₆
La PA tiene 6 términos que se corresponden con los 6 ángulos.
Como dato añadido nos dice que la diferencia entre esos ángulos es de 60º, es decir:
a₆ - a₁ = 60 ... despejo ... a₆ = a₁+60
Acudo a la fórmula de suma de términos de una PA:
Sabiendo el valor del primer ángulo, calculo el del último desde la fórmula de arriba.
a₆ = 90+60 = 150º
Con esos dos datos, (primer y último término) acudo a la fórmula del término general de las PA para calcular la diferencia entre términos consecutivos.
Conocida la diferencia entre términos consecutivos ya sólo se trata de ir sumando 12 unidades a cada término para obtener el valor de todos los ángulos:
Ángulo menor = 90
Siguiente = 102
Siguiente = 114
Siguiente = 126
Siguiente = 138
Siguiente = 150
Saludos.
La diferencia entre el mayor y el menor es 60º .
Calcula el valor de cada ángulo
_______________________________________________________
Podemos saber el valor de la suma de los 6 ángulos teniendo en cuenta que el ángulo interior de cualquier polígono es suplementario del central, por tanto si el central de un hexágono mide: 360 : 6 = 60º
El ángulo interior mide 180-60 = 120º
Y multiplicando por 6 sabré el total de los seis ángulos y esto no es afectado por si los ángulos son o no son iguales:
120 × 6 = 720º
Según eso, sabemos que la suma de esos 6 ángulos que están en progresión aritmética (PA) es igual a 720º
El ángulo menor lo identifico como el primer término de la PA y lo llamo:
a₁
El ángulo mayor será el sexto término de la PA lo llamo a₆
La PA tiene 6 términos que se corresponden con los 6 ángulos.
Como dato añadido nos dice que la diferencia entre esos ángulos es de 60º, es decir:
a₆ - a₁ = 60 ... despejo ... a₆ = a₁+60
Acudo a la fórmula de suma de términos de una PA:
Sabiendo el valor del primer ángulo, calculo el del último desde la fórmula de arriba.
a₆ = 90+60 = 150º
Con esos dos datos, (primer y último término) acudo a la fórmula del término general de las PA para calcular la diferencia entre términos consecutivos.
Conocida la diferencia entre términos consecutivos ya sólo se trata de ir sumando 12 unidades a cada término para obtener el valor de todos los ángulos:
Ángulo menor = 90
Siguiente = 102
Siguiente = 114
Siguiente = 126
Siguiente = 138
Siguiente = 150
Saludos.
Respuesta dada por:
0
Respuesta:
Explicación paso a paso:
Ángulo menor = 90
Siguiente = 102
Siguiente = 114
Siguiente = 126
Siguiente = 138
Siguiente = 150
Preguntas similares
hace 6 años
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años