516. Un tubo metálico debe transportarse horizontalmente para dar vuelta en una esquina en ángulo recto desde un corredor de 2 m de ancho hasta otro de 1,5 m de ancho. Expresa el ángulo tita en función de la longitud L del tubo como se ve en la figura. Pág. 129.

Respuestas

Respuesta dada por: joseantoniopg85
8
El tubo representa fragmento de la hipotenusa de los triángulos que se forman, con la esquina, la longitud total del tubo entonces será la suma de esas dos hipotenusas que denominaremos L1 y L2

Lt= L1+L2

Entonces para el triangulo superior con hipotenusa L1

Senθ=1,5/L1
L1=3/2sen
θ

Para el triangulo inferior tenemos que L2 será 

cosθ=2/L2
L2=2/cosθ

Entonces la longitud del tubo expresada en función del ángulo θ es

L_T= \frac{3}{2senO }+ \frac{2}{cos0}

Si quieres ver más ejercicios sobre funciones trigonométricas haz clic aquí https://brainly.lat/tarea/8520978
Adjuntos:
Preguntas similares