Dos cuerdas de 80 cm de longitud y densidad
longitudinal de masa es 0,0045 kg/m están sometidas
a tensiones de 180 N y 200 N, respectivamente.
¿Cuál es la frecuencia de las pulsaciones
producidas al hacerlas vibrar simultáneamente
en su frecuencia fundamental?
Respuestas
Respuesta dada por:
44
Veamos. La velocidad de propagación de una onda en una cuerda tensa es:
V = √(T/u), siendo T la tensión y u la densidad lineal de masa.
V1 = √(180 N / 0,0045 kg/m) = 200 m/s
V2 = √(200 N / 0,0045 kg/m) = 211 m/s
Para todas las cuerdas se cumple que: V = L.f (longitud de onda por frecuencia)
f = V/L = 200 m / 0,80 m = 250 Hz
f = 210 m/s / 0,80 m = 262,5 Hz
Saludos Herminio
V = √(T/u), siendo T la tensión y u la densidad lineal de masa.
V1 = √(180 N / 0,0045 kg/m) = 200 m/s
V2 = √(200 N / 0,0045 kg/m) = 211 m/s
Para todas las cuerdas se cumple que: V = L.f (longitud de onda por frecuencia)
f = V/L = 200 m / 0,80 m = 250 Hz
f = 210 m/s / 0,80 m = 262,5 Hz
Saludos Herminio
Preguntas similares
hace 7 años
hace 7 años
hace 7 años
hace 9 años
hace 9 años
hace 9 años
hace 10 años
hace 10 años
hace 10 años