• Asignatura: Física
  • Autor: carloseduardos
  • hace 9 años

5 ejemplos magnitudes correlacionadas

Respuestas

Respuesta dada por: Pitufina156
1

jemplo 1:

Si 3 hombres necesitan 24 días para hacer un trabajo, ¿cuántos días emplearán 18 hombres para realizar el mismo trabajo?

MAGNITUDCASO 1CASO 2Nº hombres318Tiempo (días)24x

A más hombres menos tiempo, luego son magnitudes inversamente proporcionales

Método de proporciones

CASO 2: días


Ejemplo 2:

Imagínate un coche que puede circular a velocidad constante durante un viaje. Si ha empleado 6 horas en hacer el trayecto a una velocidad de 80 Km/h, ¿cuántas horas hubiera tardado circulando a 120 Km./h?

MAGNITUDCASO 1CASO 2Velocidad (Km./h)80120Tiempo (horas)6x

A más velocidad menos tiempo, luego son magnitudes inversamente proporcionales

Método de proporciones

CASO 2: horas


Ejemplo 3:

Un ganadero tiene pienso suficiente para alimentar 220 vacas durante 45 días. ¿Cuántos días podrá alimentar con la misma cantidad de pienso a 450 vacas?

MAGNITUDCASO 1CASO 2Nº vacas220450Tiempo (días)45x

A más vacas menos tiempo, luego son magnitudes inversamente proporcionales

Método de proporciones

CASO 2: días






Ejemplo 4:

Diez hombres hacen una obra en 45 días. ¿Cuántos hombres se necesitarán para hacerla en 15 días? ¿Y en 90 días?.

MAGNITUDCASO 1CASO 2CASO 3Nº hombres10xyTiempo (días)451590

A más hombres menos tiempo, luego son magnitudes inversamente proporcionales

Método de proporciones

CASO 2: hombres

CASO 3: hombres


Ejemplo 5:

Una piscina se llena en 12 horas con un grifo que arroja 180 litros de agua por minuto. a) ¿El número de litros que arroja el grifo por minuto y el tiempo que tarda en llenarse la piscina, son inversamente proporcionales? b) ¿Cuánto tiempo tardaría en llenarse la piscina si el grifo arroja 360 litros por minuto?

MAGNITUDCASO 1CASO 2Caudal (l/min)180360Tiempo (h)12x

A más caudal menos tiempo, luego son magnitudes inversamente proporcionales


Método de proporciones

CASO 2: horas
Preguntas similares