Determina el valor de b para que la ecuacion x^2-px+25=0 tenga solo una solucion.
Argumenta la estrategia empleada

Respuestas

Respuesta dada por: LuffyPeru
0
Determina el valor de b para que la ecuación x^2-px+25=0 tenga solo una solución. Argumenta la estrategia empleada

Recordar:   
 ax^{2} +bx +c=0

Por lo tanto, nos piden hallar -p
 x^{2} -px +25 =0

Para que sea una solo respuesta es necesario al resolver, que tenga un solo signo (en este caso negativo ya que queremos hallar -p)  y el mismo numero.

Siendo : 
(x - 5) ( x -5) = x^{2} -px +25 (x -5)(x-5) =    x^{2} -10x+25 Asi  x- 5 = 0 ; La única respuesta seria 5 
Por lo tanto -p = -10 

RESPUESTA : La respuesta es -10

Respuesta dada por: Anónimo
2
Determina el valor de b para que la ecuación b^2-bx +25=0 tenga una sola solución.
Argumenta la estrategia empleada.


Para que una ecuación cuadrática completa tenga una sola solución,el discriminante tiene que ser igual a cero.

El discriminante está dado por:

√ b^2 -4ac

b^2-bx+25=0

a=1
b=?
c=25

b2 - 4(1)(25)=0

b^2-100=0

b=√100

b=10

Ahora comprobamos en el discriminante:

√(10)^2 - 4(1)(25)=0

√100-100=0

0=0

Respuesta: -b=-10
Preguntas similares