Halla las longitudes de los lados de un triángulo rectángulo si uno de los catetos mide 7 cm más que el otro, pero 1 cm menos que la hipotenusa.

Respuestas

Respuesta dada por: Haiku
3
cateto menor, a = x
cateto mayor, b = x+7
hipotenusa, h = x+7+1=x+8

Usamos el Teorema de Pitágoras
h² = a²+b²
(x+8)² = (x+7)²+x²
x²+16x+64 = x²+14x+49+x²
x²+x²-x²+14x-16x+49-64 = 0
x²-2x-15 = 0

x= \frac{2+- \sqrt{ 2^{2}+4*15 } }{2} = \frac{2+- \sqrt{4+60} }{2} = \frac{2+- \sqrt{64} }{2} = \frac{2+-8}{2}

Como lo que buscamos es una medida de longitud sólo nos vale la solución positiva

x= \frac{2+8}{2} = \frac{10}{2} =5

Cateto menor = 5
Cateto mayor = 5+7 = 12
Hipotenusa = 12+1= 13

Comprobamos
 13² =12²+5²
169 =144+25
169 =169


yenimichiyo: Muchisimas gracias!
Preguntas similares