Hallar un numero de 4 cifras que comienza en 6, tal que si se suprime esta cifra el numero resultante es igual a la veinticincoava parte del numero original
Respuestas
Respuesta dada por:
13
Sea el número: 6abc
Si se suprime esta cifra el número resultante es igual a la veinticincoava parte del número original:
abc = (6abc)/25
25*(abc) = 6abc
25*abc = 6000 + abc
25*abc - abc = 6000
24*abc = 6000
abc = 6000/24
abc = 250
Por tanto, el número es 6250.
Saludos.
Si se suprime esta cifra el número resultante es igual a la veinticincoava parte del número original:
abc = (6abc)/25
25*(abc) = 6abc
25*abc = 6000 + abc
25*abc - abc = 6000
24*abc = 6000
abc = 6000/24
abc = 250
Por tanto, el número es 6250.
Saludos.
Preguntas similares
hace 9 años
hace 9 años
hace 9 años