Sean f, g y h funciones de "x" tales que
h(x) =f(x) • g(x) / 2f(x) +3g(x)
Y f(1)=3, g(1)=-3 y f'(1)=-2 y g'(1)=1
Determine h'(x)
Adjuntos:
![](https://es-static.z-dn.net/files/d50/8a152fdd63634033e34f28fd8e818730.jpg)
Respuestas
Respuesta dada por:
5
Debes de usar algunas propiedades de la derivada:
![h(x)= \frac{f(x)g(x)}{2f(x)+3g(x)} h(x)= \frac{f(x)g(x)}{2f(x)+3g(x)}](https://tex.z-dn.net/?f=h%28x%29%3D+%5Cfrac%7Bf%28x%29g%28x%29%7D%7B2f%28x%29%2B3g%28x%29%7D+)
![h'(x)= \frac{[f(x)g(x)]'[2f(x)+3g(x)]-[f(x)g(x)][2f(x)+3g(x)]'}{ [2f(x)+3g(x)]^{2} } h'(x)= \frac{[f(x)g(x)]'[2f(x)+3g(x)]-[f(x)g(x)][2f(x)+3g(x)]'}{ [2f(x)+3g(x)]^{2} }](https://tex.z-dn.net/?f=h%27%28x%29%3D+%5Cfrac%7B%5Bf%28x%29g%28x%29%5D%27%5B2f%28x%29%2B3g%28x%29%5D-%5Bf%28x%29g%28x%29%5D%5B2f%28x%29%2B3g%28x%29%5D%27%7D%7B+%5B2f%28x%29%2B3g%28x%29%5D%5E%7B2%7D+%7D+)
![h'(x)= \frac{[f(x)g'(x)+g(x)f'(x)][2f(x)+3g(x)]-[f(x)g(x)][2'f(x)+3g'(x)]}{4 f^{2}(x)+12f(x)g(x)+9 g^{2}(x) } h'(x)= \frac{[f(x)g'(x)+g(x)f'(x)][2f(x)+3g(x)]-[f(x)g(x)][2'f(x)+3g'(x)]}{4 f^{2}(x)+12f(x)g(x)+9 g^{2}(x) }](https://tex.z-dn.net/?f=h%27%28x%29%3D+%5Cfrac%7B%5Bf%28x%29g%27%28x%29%2Bg%28x%29f%27%28x%29%5D%5B2f%28x%29%2B3g%28x%29%5D-%5Bf%28x%29g%28x%29%5D%5B2%27f%28x%29%2B3g%27%28x%29%5D%7D%7B4+f%5E%7B2%7D%28x%29%2B12f%28x%29g%28x%29%2B9+g%5E%7B2%7D%28x%29++%7D+)
Resolviendo los productos y resolviendo términos en el numerador se obtiene:
![h'(x)= \frac{2f^{2}(x)g'(x)+3g^{2}(x)f'(x)}{4f^{2}(x)+12f(x)g(x)+9g^{2}(x)} h'(x)= \frac{2f^{2}(x)g'(x)+3g^{2}(x)f'(x)}{4f^{2}(x)+12f(x)g(x)+9g^{2}(x)}](https://tex.z-dn.net/?f=h%27%28x%29%3D+%5Cfrac%7B2f%5E%7B2%7D%28x%29g%27%28x%29%2B3g%5E%7B2%7D%28x%29f%27%28x%29%7D%7B4f%5E%7B2%7D%28x%29%2B12f%28x%29g%28x%29%2B9g%5E%7B2%7D%28x%29%7D++)
Ahora, si te dan los valores evaluados en x = 1, supongo que el problema en el fondo pedía h'(1):
![h'(1)= \frac{2f^{2}(1)g'(1)+3g^{2}(1)f'(1)}{4 f^{2}(1)+12f(1)g(1)+9g^{2}(1)} h'(1)= \frac{2f^{2}(1)g'(1)+3g^{2}(1)f'(1)}{4 f^{2}(1)+12f(1)g(1)+9g^{2}(1)}](https://tex.z-dn.net/?f=h%27%281%29%3D+%5Cfrac%7B2f%5E%7B2%7D%281%29g%27%281%29%2B3g%5E%7B2%7D%281%29f%27%281%29%7D%7B4+f%5E%7B2%7D%281%29%2B12f%281%29g%281%29%2B9g%5E%7B2%7D%281%29%7D+)
![h'(1)= \frac{2 (3)^{2}(1)+3(-3)^{2}(-2)}{4(3)^{2}+12(3)(1)+9(-3)^{2} } h'(1)= \frac{2 (3)^{2}(1)+3(-3)^{2}(-2)}{4(3)^{2}+12(3)(1)+9(-3)^{2} }](https://tex.z-dn.net/?f=h%27%281%29%3D+%5Cfrac%7B2+%283%29%5E%7B2%7D%281%29%2B3%28-3%29%5E%7B2%7D%28-2%29%7D%7B4%283%29%5E%7B2%7D%2B12%283%29%281%29%2B9%28-3%29%5E%7B2%7D++%7D+)
![h'(1)= \frac{18-54}{36-36+27} = \frac{-36}{-27}= \frac{4}{3} h'(1)= \frac{18-54}{36-36+27} = \frac{-36}{-27}= \frac{4}{3}](https://tex.z-dn.net/?f=h%27%281%29%3D+%5Cfrac%7B18-54%7D%7B36-36%2B27%7D+%3D+%5Cfrac%7B-36%7D%7B-27%7D%3D+%5Cfrac%7B4%7D%7B3%7D++)
Un saludo.
Resolviendo los productos y resolviendo términos en el numerador se obtiene:
Ahora, si te dan los valores evaluados en x = 1, supongo que el problema en el fondo pedía h'(1):
Un saludo.
Preguntas similares
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años