Respuestas
Respuesta dada por:
0
Construya la ecuación a partir de las raíces
![x_1= \frac{3}{4} \\ \\ x_2=- \frac{5}{8} \\ \\ x_1= \frac{3}{4} \\ \\ x_2=- \frac{5}{8} \\ \\](https://tex.z-dn.net/?f=x_1%3D+%5Cfrac%7B3%7D%7B4%7D++%5C%5C++%5C%5C+x_2%3D-+%5Cfrac%7B5%7D%7B8%7D++%5C%5C++%5C%5C+)
La ecuacion general se escribe como:
![x^{2} +ax+c=0 x^{2} +ax+c=0](https://tex.z-dn.net/?f=+x%5E%7B2%7D+%2Bax%2Bc%3D0)
tendriamos dos ecuaciones con dos ingonitas:
![x^{2} +ax+c=0 \\ \\ x_1^{2} +ax_1+c=0 \\ \\ x_2^{2} +ax_2+c=0 x^{2} +ax+c=0 \\ \\ x_1^{2} +ax_1+c=0 \\ \\ x_2^{2} +ax_2+c=0](https://tex.z-dn.net/?f=x%5E%7B2%7D+%2Bax%2Bc%3D0+%5C%5C++%5C%5C++x_1%5E%7B2%7D+%2Bax_1%2Bc%3D0+%5C%5C++%5C%5C++x_2%5E%7B2%7D+%2Bax_2%2Bc%3D0)
substituyendo los valores de las dos raices:
![x_1^{2} +ax_1+c=0 \\ \\ (\frac{3}{4})^{2} +a( \frac{3}{4} )+c=0 \\ \\ (- \frac{5}{8}) ^{2} +a(- \frac{5}{8} )+c=0 \\ \\ x_1^{2} +ax_1+c=0 \\ \\ (\frac{3}{4})^{2} +a( \frac{3}{4} )+c=0 \\ \\ (- \frac{5}{8}) ^{2} +a(- \frac{5}{8} )+c=0 \\ \\](https://tex.z-dn.net/?f=x_1%5E%7B2%7D+%2Bax_1%2Bc%3D0+%5C%5C+++%5C%5C++%28%5Cfrac%7B3%7D%7B4%7D%29%5E%7B2%7D+%2Ba%28+%5Cfrac%7B3%7D%7B4%7D+%29%2Bc%3D0+%5C%5C+%5C%5C+%28-+%5Cfrac%7B5%7D%7B8%7D%29+%5E%7B2%7D+%2Ba%28-+%5Cfrac%7B5%7D%7B8%7D+%29%2Bc%3D0+%5C%5C+%5C%5C+)
Despejando a c de la primera ecuacion (x1)
![c=-( \frac{3}{4} )^{2} - \frac{3}{4} a c=-( \frac{3}{4} )^{2} - \frac{3}{4} a](https://tex.z-dn.net/?f=c%3D-%28++%5Cfrac%7B3%7D%7B4%7D+%29%5E%7B2%7D+-+%5Cfrac%7B3%7D%7B4%7D+a)
Con esta "c", se completa la segunda ecuacion :
![(- \frac{5}{8}) ^{2} +a(- \frac{5}{8} )+c=0 \\ \\ (- \frac{5}{8}) ^{2} +a(- \frac{5}{8} )+(-( \frac{3}{4} )^{2} - \frac{3}{4} a)=0 \\ \\ \frac{25}{64} - \frac{9}{16} +a(- \frac{5}{8})- \frac{3}{4} a=0 \\ \\ \frac{25}{64} - \frac{9}{16} - \frac{5}{8}a- \frac{3}{4} a=0 \\ \\ \frac{(25-36)}{64} + a(-\frac{5}{8}- \frac{3}{4})=0\\ \\ -\frac{11}{64} + a(-\frac{5}{8}- \frac{6}{8})=0\\ \\ -\frac{11}{64} + a(-\frac{11}{8}})=0 \\ \\ a(-\frac{11}{8})=\frac{11}{64} \\ \\ (- \frac{5}{8}) ^{2} +a(- \frac{5}{8} )+c=0 \\ \\ (- \frac{5}{8}) ^{2} +a(- \frac{5}{8} )+(-( \frac{3}{4} )^{2} - \frac{3}{4} a)=0 \\ \\ \frac{25}{64} - \frac{9}{16} +a(- \frac{5}{8})- \frac{3}{4} a=0 \\ \\ \frac{25}{64} - \frac{9}{16} - \frac{5}{8}a- \frac{3}{4} a=0 \\ \\ \frac{(25-36)}{64} + a(-\frac{5}{8}- \frac{3}{4})=0\\ \\ -\frac{11}{64} + a(-\frac{5}{8}- \frac{6}{8})=0\\ \\ -\frac{11}{64} + a(-\frac{11}{8}})=0 \\ \\ a(-\frac{11}{8})=\frac{11}{64} \\ \\](https://tex.z-dn.net/?f=%28-+%5Cfrac%7B5%7D%7B8%7D%29+%5E%7B2%7D+%2Ba%28-+%5Cfrac%7B5%7D%7B8%7D+%29%2Bc%3D0++%5C%5C++%5C%5C+%28-+%5Cfrac%7B5%7D%7B8%7D%29+%5E%7B2%7D+%2Ba%28-+%5Cfrac%7B5%7D%7B8%7D+%29%2B%28-%28+%5Cfrac%7B3%7D%7B4%7D+%29%5E%7B2%7D+-+%5Cfrac%7B3%7D%7B4%7D+a%29%3D0++%5C%5C++%5C%5C++%5Cfrac%7B25%7D%7B64%7D+-+%5Cfrac%7B9%7D%7B16%7D+%2Ba%28-+%5Cfrac%7B5%7D%7B8%7D%29-+%5Cfrac%7B3%7D%7B4%7D+a%3D0+%5C%5C++%5C%5C+%5Cfrac%7B25%7D%7B64%7D+-+%5Cfrac%7B9%7D%7B16%7D+-+%5Cfrac%7B5%7D%7B8%7Da-+%5Cfrac%7B3%7D%7B4%7D+a%3D0+%5C%5C++%5C%5C++%5Cfrac%7B%2825-36%29%7D%7B64%7D+%2B+a%28-%5Cfrac%7B5%7D%7B8%7D-+%5Cfrac%7B3%7D%7B4%7D%29%3D0%5C%5C++%5C%5C++-%5Cfrac%7B11%7D%7B64%7D+%2B+a%28-%5Cfrac%7B5%7D%7B8%7D-+%5Cfrac%7B6%7D%7B8%7D%29%3D0%5C%5C++%5C%5C++-%5Cfrac%7B11%7D%7B64%7D+%2B+a%28-%5Cfrac%7B11%7D%7B8%7D%7D%29%3D0+%5C%5C++%5C%5C+a%28-%5Cfrac%7B11%7D%7B8%7D%29%3D%5Cfrac%7B11%7D%7B64%7D+++%5C%5C++%5C%5C+)
![a=- (\frac{11}{64}) ( \frac{8}{11} ) \\ \\ a=- \frac{8}{64} =- \frac{1}{8} a=- (\frac{11}{64}) ( \frac{8}{11} ) \\ \\ a=- \frac{8}{64} =- \frac{1}{8}](https://tex.z-dn.net/?f=a%3D-+%28%5Cfrac%7B11%7D%7B64%7D%29+%28+%5Cfrac%7B8%7D%7B11%7D+%29+%5C%5C++%5C%5C+a%3D-+%5Cfrac%7B8%7D%7B64%7D+%3D-+%5Cfrac%7B1%7D%7B8%7D+)
Con "a" , obtenemos a "c" :
![c=-( \frac{3}{4} )^{2} - \frac{3}{4} a \\ \\ c=- \frac{9}{16} - \frac{3}{4}(- \frac{1}{8} ) \\ \\ c=- \frac{9}{16} + \frac{3}{32} \\ \\ c= \frac{(-18+3)}{32} = -\frac{15}{32} \\ \\ \text{Conociendo a "a" y a "c", la ecuacion queda como :} \\ \\ x^{2} - \frac{1}{8} x- \frac{15}{32} =0
c=-( \frac{3}{4} )^{2} - \frac{3}{4} a \\ \\ c=- \frac{9}{16} - \frac{3}{4}(- \frac{1}{8} ) \\ \\ c=- \frac{9}{16} + \frac{3}{32} \\ \\ c= \frac{(-18+3)}{32} = -\frac{15}{32} \\ \\ \text{Conociendo a "a" y a "c", la ecuacion queda como :} \\ \\ x^{2} - \frac{1}{8} x- \frac{15}{32} =0](https://tex.z-dn.net/?f=c%3D-%28++%5Cfrac%7B3%7D%7B4%7D+%29%5E%7B2%7D+-+%5Cfrac%7B3%7D%7B4%7D+a+%5C%5C++%5C%5C+c%3D-+%5Cfrac%7B9%7D%7B16%7D+-+%5Cfrac%7B3%7D%7B4%7D%28-+%5Cfrac%7B1%7D%7B8%7D+%29+%5C%5C++%5C%5C+c%3D-+%5Cfrac%7B9%7D%7B16%7D+%2B+%5Cfrac%7B3%7D%7B32%7D+%5C%5C++%5C%5C+c%3D+%5Cfrac%7B%28-18%2B3%29%7D%7B32%7D+%3D+-%5Cfrac%7B15%7D%7B32%7D++%5C%5C++%5C%5C+%5Ctext%7BConociendo+a+++%22a%22+y+a+%22c%22%2C+la+ecuacion+queda+como+%3A%7D+%5C%5C++%5C%5C++x%5E%7B2%7D+-+%5Cfrac%7B1%7D%7B8%7D+x-+%5Cfrac%7B15%7D%7B32%7D+%3D0%0A)
La ecuacion general se escribe como:
tendriamos dos ecuaciones con dos ingonitas:
substituyendo los valores de las dos raices:
Despejando a c de la primera ecuacion (x1)
Con esta "c", se completa la segunda ecuacion :
Con "a" , obtenemos a "c" :
Preguntas similares
hace 6 años
hace 6 años
hace 6 años
hace 9 años
hace 9 años