Respuestas
Respuesta dada por:
2
Para las parabolas se tienen dos casos generales
Cuando son paralelas al eje X
Tiene la siguiente forma
V(h;k) y su foco F(h+p;k)
De esta manera puedes comparar que k es igual en ambos como es el quinto caso
Tienes V(2,5) y F(-1,5)
entonces k=5
y h=5, en el foco es -1 entonces
h+p=-1.... Pero sabemos que h=5
Osea 5+p=-1
Luego p=-6 es decir que la directriz es x=-p la ecuación es x=6
Para el eje de simetria
Es una ecuación en función de Y que es igual a Y=k
Para el segundo caso de las parábolas osea su eje focal es paralelo al eje Y su vertice tiene la forma
V(h,k) y su foco F(h,k+p)
Vemos que h es constante
Como en el 7caso
V(-1,2) y F(-1,4)
-1 es igual en ambos entonces tenemos que h=-1, k=2
En el foco k+p=4
Pero k=2 entonces p=2
La directriz en este caso paralelo al eje Y tiene la forma
y=-p
En este caso es y=-2
El eje de simetría para estos casos tiene la forma
x=h osea es x=-1
Espero te sirva
Cuando son paralelas al eje X
Tiene la siguiente forma
V(h;k) y su foco F(h+p;k)
De esta manera puedes comparar que k es igual en ambos como es el quinto caso
Tienes V(2,5) y F(-1,5)
entonces k=5
y h=5, en el foco es -1 entonces
h+p=-1.... Pero sabemos que h=5
Osea 5+p=-1
Luego p=-6 es decir que la directriz es x=-p la ecuación es x=6
Para el eje de simetria
Es una ecuación en función de Y que es igual a Y=k
Para el segundo caso de las parábolas osea su eje focal es paralelo al eje Y su vertice tiene la forma
V(h,k) y su foco F(h,k+p)
Vemos que h es constante
Como en el 7caso
V(-1,2) y F(-1,4)
-1 es igual en ambos entonces tenemos que h=-1, k=2
En el foco k+p=4
Pero k=2 entonces p=2
La directriz en este caso paralelo al eje Y tiene la forma
y=-p
En este caso es y=-2
El eje de simetría para estos casos tiene la forma
x=h osea es x=-1
Espero te sirva
Preguntas similares
hace 6 años
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años