integral de x^3 e^-x^2 dx

Respuestas

Respuesta dada por: CarlosMath
0
\displaystyle
I=\int x^3e^{-x^2}dx\\ \\
\texttt{Cambio de variable: }u=x^2\to du = 2x~dx\to x~dx =\dfrac{1}{2}~du\\ \\ \\
I=\int x^2e^{-x^2}\cdot x~dx\\ \\
I=\int u{e^{-u}}\cdot \dfrac{1}{2}~du\\ \\
I=\dfrac{1}{2}\int u{e^{-u}}~du\\ \\
\texttt{Aprovechando que }d(e^{-u})=-e^{-u}~du\to e^{-u}~du=-d(e^{-u})\\ \\
I=-\dfrac{1}{2}\int u~d(e^{-u})\\ \\ \\
I=-\dfrac{1}{2}\left[ue^{-u}-\int e^{-u}~du\right]\\ \\ \\
I=-\dfrac{1}{2}\left[ue^{-u}+e^{-u}\right]+C\\ \\ \\
I=-\dfrac{e^{-u}(u+1)}{2}+C


\texttt{Devolviendo variable:}\\ \\
\hspace*{3cm}\boxed{I=-\dfrac{e^{-x^2}(x^2+1)}{2}+C}
Preguntas similares