Algebra de Mancil tomo 2 pag 122 ejercicios 148.
Resolver las ecuaciones siguientes por descomposición en factores
Respuestas
1) (x-3)(x+7) = 0 2) (x-6)(x+5) = 0 3) (y-2)(y+4) = 0 4) (y+5)(y+12) = 0
5) (x-1)(x+8) = 0 6) (z-10)(z-3) = 0 7) 2*(x - 3/2)(x - 1) = 0
8) 2*(x-4)(x + 3/2) = 0 9) 6*(y- 3/2)(y + 2/3) = 0 10) 4*(t - 3/4)(t + 3) = 0
11) 4*(x - 3/2)(x - 3/2) = 0 12) 6*(x - 5/2)(x + 4/3) = 0
13) 8*(x - 1/2)(x + 3/4) = 0 14) 3*(y - 7/3)(y+2) = 0
15) 30*(x - 1/5)(x + 5/6) = 0 16) 14*(x - 3/2)(x + 4/7) = 0
Espero haberte ayudado.
Al resolver las ecuaciones por descomposición en factores se obtiene:
1. (x-3)(x+7)
2. (x-6)(x+5)
3. (y+2)(y+4)
4. (y+5)(y+12)
5. (x-1)(x+8)
6. (z-10)(z+3)
7. (x-3/2)(x+1)
8. (x-4)(x+3/2)
9. (y-3/2)(y+2/3)
10. (t-3/4)(t+3)
11. (z-3/2)(z-3/2)
12. (x-5/2)(x+4/3)
13. (x-1/2)(x+3/4)
14. (y-7/3)(y+2)
15.(x-1/5)(x+5/6)
16. (z-3/2)(z+4/7)
Explicación:
Los polinomios de grado 2, se calculan sus raíces con la formula resolvente;
1. x² + 4x - 21 = 0
Siendo;
a = 1; b = 4; c = -21
Sustituir;
x₁ = 3
x₂ = -7
=(x-3)(x+7)
2. x² - x - 30 = 0
Siendo;
a = 1; b = -1; c = -30
Sustituir;
x₁ = 6
x₂ = -5
=(x-6)(x+5)
3. y² +2y - 8 = 0
Siendo;
a = 1; b = 2; c = -8
Sustituir;
x₁ = -2
y₂ = -4
=(y+2)(y+4)
4. y² + 17y + 60 = 0
Siendo;
a = 1; b = 17; c = 60
Sustituir;
x₁ = -5
y₂ = -12
=(y+5)(y+12)
5. x² + 7x - 8 = 0
Siendo;
a = 1; b = 7; c = -8
Sustituir;
x₁ = 1
x₂ = -8
=(x-1)(x+8)
6. z² - 7z - 30 = 0
Siendo;
a = 1; b = -7; c = -30
Sustituir;
z₁ = 10
z₂ = -3
=(z-10)(z+3)
7. 2x² - x - 3 = 0
Siendo;
a = 2; b = -1; c = -3
Sustituir;
x₁ = 3/2
x₂ = -1
=(x-3/2)(x+1)
8. 2x² - 5x - 12 = 0
Siendo;
a = 2; b = -5; c = -12
Sustituir;
x₁ = 4
x₂ = -3/2
=(x-4)(x+3/2)
9. 6y² - 5y - 6 = 0
Siendo;
a = 6; b = -5; c = -6
Sustituir;
x₁ = 3/2
y₂ = -2/3
=(y-3/2)(y+2/3)
10. 4t² + 9t - 9 = 0
Siendo;
a = 4; b = 9; c = -9
Sustituir;
t₁ = 3/4
t₂ = -3
=(t-3/4)(t+3)
11. 4z² - 12z + 9 = 0
Siendo;
a = 4; b = -12; c = 9
Sustituir;
z₁ = 3/2
z₂ = 3/2
=(z-3/2)(z-3/2)
12. 6x² - 7x - 20 = 0
Siendo;
a = 6; b = -7; c = -20
Sustituir;
x₁ = 5/2
x₂ = -4/3
=(x-5/2)(x+4/3)
13. 8x² + 2x - 3 = 0
Siendo;
a = 8; b = 2; c = -3
Sustituir;
x₁ = 1/2
x₂ = -3/4
=(x-1/2)(x+3/4)
14. 3y² - y - 14 = 0
Siendo;
a = 3; b = -1; c = -14
Sustituir;
x₁ = 7/3
y₂ = -2
=(y-7/3)(y+2)
15. 30x² + 19x - 5 = 0
Siendo;
a = 30; b = 19; c = -5
Sustituir;
x₁ = 1/5
x₂ = -5/6
=(x-1/5)(x+5/6)
11. 14z² - 13z - 12 = 0
Siendo;
a = 14; b = -13; c = -12
Sustituir;
z₁ = 3/2
z₂ = -4/7
=(z-3/2)(z+4/7)
Puedes ver un ejercicio relacionado https://brainly.lat/tarea/12965462.