Respuestas
Respuesta dada por:
5
Los números racionales son aquellos que pueden ser representados mediante la división de dos números enteros. Por ejemplo: 8 (= \frac{8}{1}) ó 0,3 (=\frac{3}{10}). Estos números pueden tener una cantidad limitada de cifras decimales (por ejemplo 0,25) o ilimitada, en cuyo caso debe haber una o más cifras que se repiten constantemente (como 0,33333333333… ó 0,0272727272727…).
No son números racionales aquellos que tienen un número ilimitado de cifras decimales que no se repiten. Por ejemplo, el número \pi (=3,14159265358979323846264338327950288419716939937510…) o la raíz cuadrada de 2 (\sqrt{2} = 1,414213562…).
Ya que los números racionales se pueden deducir a partir de una fracción, hoy trataré de aclarar cómo se llega a ella.
No son números racionales aquellos que tienen un número ilimitado de cifras decimales que no se repiten. Por ejemplo, el número \pi (=3,14159265358979323846264338327950288419716939937510…) o la raíz cuadrada de 2 (\sqrt{2} = 1,414213562…).
Ya que los números racionales se pueden deducir a partir de una fracción, hoy trataré de aclarar cómo se llega a ella.
Preguntas similares
hace 9 años