• Asignatura: Matemáticas
  • Autor: florescastellon
  • hace 9 años

Yuto and Riko went for a bike ride on the same path. When Riko left their house, Yuto was 5.25 miles along the path. If Yuto’s average speed was 0.25 miles per minute and Riko’s average speed was 0.35 miles per minute, then Riko will be behind Yuto when 0 ≤ t < 52.5, where t is time in minutes. Explain what this solution means and why t cannot be less than zero.

Respuestas

Respuesta dada por: JoSinclair
8
Yuto takes a lead of 5.25 miles by the time Riko leaves his house. Since we know that Riko's speed is greater than Yuto's, at some point he will be able to reach it.
If the difference in velocities is = 0.35 - 0.25 = 0.1 mile / minute, we know that the distance will be shortened by 0.1 mile / minute.

And if the speed remains constant, Riko will have reached Yuto, or will be behind him in:

5.25 miles (advantage) / 0.1 miles / minute = 52.5 minutes.

This is what the expression 0 ≤ t <52.5 refers to, because it is the time it takes Riko to reach Yuto.


And t can not be less than 0, taking into account the departure of both from home, since Riko left 21 minutes after Yuto and the time it took Riko to reach Yuto (52.5 minutes). In no case will t be less than 0.

JoSinclair: En español: Yuto lleva una ventaja de 5.25 millas para el momento en que Riko sale de su casa. Como sabemos que la velocidad de Riko es mayor que la de Yuto, en algún momento podrá alcanzarlo.
Si la diferencia de las velocidades es = 0,35 – 0,25 = 0,1 milla/minuto, sabemos que la distancia se acortará a razón de 0,1 milla / minuto.
JoSinclair: A esto se refiere la expresión 0 ≤ t < 52.5, ya que es el tiempo en que tarda Riko en alcanzar a Yuto

Y t no puede ser menor que 0, tomando en cuenta la salida de ambos de su casa, ya que Riko salió 21 minutos después de Yuto y el tiempo en que tardó Riko en alcanzar a Yuto (52,5 minutos). En ningún caso t será menor a 0.
Preguntas similares