Encuentra las coordenadas del punto de intersección del siguiente par de rectas:
2x - y + 7 = 8
x + 2y = 16
Respuestas
Respuesta dada por:
6
2x - y + 7 = 8
x + 2y = 16
despejamos el valor de X de la primera ecuacion
2x - y + 7 = 8
y=8+2x-7
ahora lo empleamos en la segunda ecuación
x + 2y = 16
x+ 2(8+2x-7)=16
x+16+4x-14=16
5x=16+14-16
x=14/5
x=2.8
despejando x en la segunda ecuación
2x - y + 7 = 8
2(2.8)-y+7=8
4.8-y+7=8
y=8+4.8-7
y=5.8
comprobación
x + 2y = 16
2.8+2(5.8)=16
2.8+11.6=16
14.4 es desigual a 16
2x - y + 7 = 8
2(2.8)-5.8+7=8
4.8-5.8+7=8
6 es desigual a 8
por lo tanto este problema no tiene solución no abra intersección
x + 2y = 16
despejamos el valor de X de la primera ecuacion
2x - y + 7 = 8
y=8+2x-7
ahora lo empleamos en la segunda ecuación
x + 2y = 16
x+ 2(8+2x-7)=16
x+16+4x-14=16
5x=16+14-16
x=14/5
x=2.8
despejando x en la segunda ecuación
2x - y + 7 = 8
2(2.8)-y+7=8
4.8-y+7=8
y=8+4.8-7
y=5.8
comprobación
x + 2y = 16
2.8+2(5.8)=16
2.8+11.6=16
14.4 es desigual a 16
2x - y + 7 = 8
2(2.8)-5.8+7=8
4.8-5.8+7=8
6 es desigual a 8
por lo tanto este problema no tiene solución no abra intersección
Preguntas similares
hace 6 años
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años