En un cultivo de bacterias n después de x días de crecimiento, se determinó la siguiente ecuación:n=360(2.56)^{x}Encuentra el número de días que transcurrirían para que en el cultivo haya 4219 bacterias. Redondea al entero más cercano.El número de días trascurridos para que haya 4219 bacterias es de _________días.
Respuestas
Respuesta dada por:
168
4219=360(2.56)*
4219/360=2.56*
11.72=2.56*
log11.73/log2.56=x
x=2.61
En respuesta de Autec jajaja, es 3.
4219/360=2.56*
11.72=2.56*
log11.73/log2.56=x
x=2.61
En respuesta de Autec jajaja, es 3.
Respuesta dada por:
48
El número de días transcurridos para que haya 4219 bacterias es 3 días
Ecuación:
n= 360*2.56ˣ
Explicación:
Se reemplaza n= 4219
4219 =360*2.56ˣ
Se realiza el siguiente procedimiento para hallar el valor de x:
4219/360 = 2.56ˣ
11.72 = 2.56ˣ
Aplicando logaritmo:
Log( 11.72) = Log (2.56ˣ)
Log( 11.72) =x. log (2.56)
x= Log( 11.72) /log (2.56)
x=2.62 días
Redondeando al entero más cercano:
x= 3 días
Por lo tanto, deben pasar 3 días para que hayan 4219 bacterias
Puedes profundizar en el tema consultando el siguiente link: https://brainly.lat/tarea/11137792
Adjuntos:
Preguntas similares
hace 6 años
hace 9 años
hace 9 años
hace 9 años