La diferencia de los cuadrados de dos números enteros consecutivos es 17
¿ Cuáles son estos números ?

Respuestas

Respuesta dada por: Akenaton
1
Sea:

X = Primer Numero

X + 1 = Numero Consecutivo

X² = Cuadrado del primero

(X + 1)² = X² + 2X + 1 Cuadrado del segundo

(X² + 2X + 1) - X² = 17

X² + 2X + 1 - X² = 17

2X + 1 = 17

2X = 17 - 1

2X = 16

X = 16/2

X = 8

X + 1 = 9

Probemos:

8² = 64

9² = 81

81 - 64 = 17 Cumple

Rta: Los numeros son 8 y 9

rambal: Me lo puedes explicar por favor
Akenaton: que parte se te dificulta?
rambal: todas menos en probemos
Akenaton: Empezamos dandole a la incognita que se nos presenta el valor de X y como nos dicen que uno consecutivo entonces ese consecutivo seria X + 1
rambal: luego
rambal: por favor ayudame
Akenaton: Ahora como te dice que la diferencia de sus cuadrados es 17, entonces hay que elevar las dos expresiones al cuadrado: (X)² = X²; (X + 1)² = X² + 2(X)(1) + 1 = X² + 2X + 1, ahora como nos dicen diferencia seria el mayor menos el menor: (X² + 2X + 1) - X² = 17
rambal: La Única Y la mejor
rambal: Gracias
Preguntas similares