La diferencia de dos números es 18 y el mínimo común múltiplo es 528. Determina la suma de cifras del menor número.

Respuestas

Respuesta dada por: VeroGarvett
9
Hola!

Lo primero que debemos hacer es descomponer en factores primos el mcm de los números buscados (En este caso A y B), ya que sabemos que el Mcm es igual a la multiplicación de los factores comunes con su máximo exponente y factores no comunes entre ellos.
A - B = 18

Mcm(A,B) = 528
528 = 2 x 2 x 2 x 2 x 3 x 11 = 2⁴ x 3 x 11

Esto quiere decir que aunque sea uno de los números buscados, sin importar si es el mayor o el menor, está conformado por al menos uno de los factores. Entonces este número puede ser:
16 ya que 2⁴ = 16
33 ya que 3 x 11 = 33
o 48 ya que 2⁴ x 3 = 48

Si a 16 le sumamos 18, asumiendo que sea el número menor, el resultado es 34, cuya descomposición en factores es 2 x 17. Como 17 no está incluidos en la descomposición por factores de 528, descartamos el número 16.

Si a 33 le restamos 18, el resultado es 15 y su descomposición en factores es 3 x 15. Si a 33 le sumamos 18, el resultado es 51 y la descomposición en factores es 3 x 17. Por lo tanto, descartamos el número 33

Si a 48 le restamos 18, el resultado es 30 y su descomposición en factores primos es 2 x 3 x 5. Si a 48 le sumamos 18, el resultado es 64 y su descomposición en factores primos es 2 x 3 x 11 que coincide con los factores primos del Mcm...

Entonces el número menor es 48, el número mayor es 64 y la sumatoria de las cifras del número menor es 4 + 8 = 12

Saludos!
Preguntas similares