Respuestas
Consideremos la ecuación general de segundo grado (ecuación cuadrática) que tiene la forma: a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} .
Resolver esta ecuación implica encontrar el valor o los valores de
x
{\displaystyle x}
que cumplen con la expresión, si es que existen.
Cuando nos enfrentamos por primera vez en la vida a esta clase de
problemas, la primera forma en la que se intenta dar una respuesta es
probando con varios números hasta "atinarle" (ya sea por que nos sonría
la buena fortuna, o por aproximación).
Algunos incluso prueban número tras número hasta hallar la solución (Método de la "Fuerza Bruta").
Después, conforme nos vamos enfrentando a mas problemas que involucran
ecuaciones cuadráticas, descubrimos algunos métodos de solución. De los
primeros que aprendemos (por simplicidad) están el "Método Gráfico"
(Realizar la gráfica correspondiente a la ecuación cuadrática igualada a
cero y observar en que abscisas la gráfica "toca o pasa" por el eje
horizontal del plano cartesiano). Otro método que aprendemos es el
"Método de Factorización" (Trabajar con la expresión cuadrática igualada
a cero hasta dejarla expresada como multiplicación de otras dos
expresiones algebraicas, y encontrar "por simple observación" los
valores que hacen que estas últimas dos ecuaciones sean iguales a cero).
Las desventajas de estos métodos es que implican trabajo excesivo, y no
se garantiza que se encuentre la solución de la ecuación (al menos una
solución "Real").
El último método que se estudia para resolver ecuaciones de segundo grado es la "Fórmula General".