una caja con forma de prisma recto tiene un volumen representado por la ecuacion y3 - y2 + 4y - 4. considerando que el area de la base es y2 + 4, resuelve.a. Calcula la expresion que representa la altura de la caja
Respuestas
Respuesta:Una caja con forma de prisma recto tiene un volumen representado por una ecuación. Considerando el área de la base.
A) El dibujo que representa la situación se puede ver en la imagen.
B) La Expresión algebraica que representa la altura de la caja es:
altura = y - 1
Explicación:
Datos;
Volumen: y³-y²+4y-4
Área base: y²+4
El volumen de un prisma es la multiplicación sus longitudes (largo, ancho y altura).
V = a·b·h = A_b·h
Siendo;
a: largo
b: ancho
h: altura
El área de base forma un rectángulo, la cual es el producto de la largo por el ancho.
A_b = a·b
y²+4 = a·b
Sustituir A_b en V;
y³-y²+4y-4 = (y²+4)·h
Despejar h;
h = (y³-y²+4y-4)/(y²+4)
Aplicar división de polinomios;
Dividir los factores de mayor grado del numerador y del denominador;
y³/y² = y
Multiplicar y por y²+4;
y³+4y
Restar y³+4y a y³-y²+4y-4;
-y²-4
= y + (-y²-4)/(y²+4)
Dividir los factores de mayor grado del numerador y del denominador;
-y²/y² = -1
Multiplicar -1 por y²+4;
-y²-4
Restar -y²-4 a -y²-4;
0
= y-1
h = y - 1