• Asignatura: Matemáticas
  • Autor: ramirez909Rmz
  • hace 9 años

¿la longitud de los lados de un cuadrado cuya diagonal es 4 unidades mayor que cualquiera de ellos ?

Respuestas

Respuesta dada por: 0oJhonatano0
17
Si tienes un cuadrado y trazas una de sus dos diagonales entonces se forman dos triángulo. Si tomas solo uno de ellos y le ponemos los datos que nos indica el problema podemos decir que los catetos coinciden con los lados del triángulo y la hipotenusa coincide con la diagonal.

Como nos dice que la diagonal tiene 4 unidades más que el lado entonces podemos decir que:

La hipotenusa tiene 4 unidades más que el cateto de éste triángulo.

Entonces como es un cuadrado, y la diagonal formó el triángulo, éste triángulo tiene catetos iguales ya que éstos catetos son los lados del cuadrado y a su vez estos lados son iguales.

Entonces si los catetos midieran "X" la hipotenusa valdría "X+4" según los datos.

Y por pitágoras se cumpliría que:

X² + X² = (X+4)² 

2X² = X² + 8X + 16

2X² - X² - 8X - 16 = 0

X² - 8X - 16 = 0

Por fórmula general hallas las raíces ya que no son enteros.

 x_{1} = 4 + 4 \sqrt{2}

 x_{2} = 4 - 4 \sqrt{2}

Como verás la raíz  x_{2} es negativa, y la longitud no puede ser negativa así que tomas solo la raíz  x_{1} = 4 + 4 \sqrt{2}

Y esa es la distancia o longitud del cateto.

ramirez909Rmz: gracias !!! :D
Preguntas similares