SUCESIÓN DE PADOVAN . La sucesión de padovan , nombrada así en honor al arquitecto , autor y profesor del Reino Unido , Richard padova, fue descrita por el matemático Ian Stewarte en su articulo Mathematical Recreations de la revista Scientific American en junio de 1996 Los primeros términos de esta sucesión sin: 1,1,1,2,2,3,4,5,7,9,... para construir esta sucesión se define : P(0)=P(1)=P(2)=1 P(n)=P(n-2)+P(n-3) ¡VERIFICAMOS!
¿como cambia esta sucesion si ahora definimos P(0)=0; P(1)= 1; P(2) =2?
escriba los 20 primeros terminos de la sucesion asi definida
Respuestas
Respuesta dada por:
7
La sucesión de Padovan sigue la siguiente forma:
P(n) = P(n-2) + P(n-3)
En el enunciado indican los valores desde P (0) hasta P (9), que darán los primeros 9 términos de la sucesión, se describen que estos son:
P(0) = 1
P(1) = 1
P(2) = 1 [P(0)=P(1)=P(2)=1]
P(3) = 2, esto es: P(3-2) + P(3-3) = P(1) + P(0) = 1 + 1 = 2
P(4) = 2, esto es: P(4-2) + P(4-3) = P(2)+P(1) = 1 + 1 = 2
P(5) = 3, esto es: P(5-2) + P(5-3) = P(3) + P(2) = 2 + 1 = 3
P(6) = 4, esto es: P(6-2) + P(6-3) = P(4) + P(3) = 2 + 2 = 4
P(7) = 5, esto es: P(7-2) + P(7-3) = P(5) + P(4) = 3 + 2 = 5
P(8) = 7, esto es: P(8-2) + P(8-3) = P(6) + P(5) = 4 + 3 = 7
P(9) = 9, esto es: P(9-2) + P(9-3) = P(7) + P(6) = 5 + 4 = 9
Definimos los siguientes términos, hasta P(20):
P(10) = P(10-2) + P(10-3) = P(8) + P(7) = 7 + 5 = 12
P(11) = P(11-2) + P(11-3) = P(9) + P(8) = 9 + 7 = 16
P(12) = P(12-2) + P(12-3) = P(10) + P(9) = 12 + 9 = 21
P(13) = P(13-2) + P(13-3) = P(11) + P(10) = 16 + 12 = 28
P(14) = P(14-2) + P(14-3) = P(12) + P(11) = 21 + 16 = 37
P(15) = P(15-2) + P(15-3) = P(13) + P(12) = 28 + 21 = 49
P(16) = P(16-2) + P(16-3) = P(14) + P(13) = 37 + 28 = 65
P(17) = P(17-2) + P(17-3) = P(15) + P(14) = 49 + 37 = 86
P(18) = P(18-2) + P(18-3) = P(16) + P(15) = 65 + 49 = 114
P(19) = P(19-2) + P(19-3) = P(17) + P(16) = 86 + 65 = 151
P(20) = P(20-2) + P(20-3) = P(18) + P(17) = 114 + 86 = 200
P(n) = P(n-2) + P(n-3)
En el enunciado indican los valores desde P (0) hasta P (9), que darán los primeros 9 términos de la sucesión, se describen que estos son:
P(0) = 1
P(1) = 1
P(2) = 1 [P(0)=P(1)=P(2)=1]
P(3) = 2, esto es: P(3-2) + P(3-3) = P(1) + P(0) = 1 + 1 = 2
P(4) = 2, esto es: P(4-2) + P(4-3) = P(2)+P(1) = 1 + 1 = 2
P(5) = 3, esto es: P(5-2) + P(5-3) = P(3) + P(2) = 2 + 1 = 3
P(6) = 4, esto es: P(6-2) + P(6-3) = P(4) + P(3) = 2 + 2 = 4
P(7) = 5, esto es: P(7-2) + P(7-3) = P(5) + P(4) = 3 + 2 = 5
P(8) = 7, esto es: P(8-2) + P(8-3) = P(6) + P(5) = 4 + 3 = 7
P(9) = 9, esto es: P(9-2) + P(9-3) = P(7) + P(6) = 5 + 4 = 9
Definimos los siguientes términos, hasta P(20):
P(10) = P(10-2) + P(10-3) = P(8) + P(7) = 7 + 5 = 12
P(11) = P(11-2) + P(11-3) = P(9) + P(8) = 9 + 7 = 16
P(12) = P(12-2) + P(12-3) = P(10) + P(9) = 12 + 9 = 21
P(13) = P(13-2) + P(13-3) = P(11) + P(10) = 16 + 12 = 28
P(14) = P(14-2) + P(14-3) = P(12) + P(11) = 21 + 16 = 37
P(15) = P(15-2) + P(15-3) = P(13) + P(12) = 28 + 21 = 49
P(16) = P(16-2) + P(16-3) = P(14) + P(13) = 37 + 28 = 65
P(17) = P(17-2) + P(17-3) = P(15) + P(14) = 49 + 37 = 86
P(18) = P(18-2) + P(18-3) = P(16) + P(15) = 65 + 49 = 114
P(19) = P(19-2) + P(19-3) = P(17) + P(16) = 86 + 65 = 151
P(20) = P(20-2) + P(20-3) = P(18) + P(17) = 114 + 86 = 200
Preguntas similares
hace 6 años
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años