Respuestas
Respuesta dada por:
0
(a/b)[1 - (a/x)] + (b/a)[1 - (b/x)] = 1
Ejecutamos productos.
[(a/b) - (a/b)(a/x)] + [(b/a) - (b/a)(b/x)] = 1
[(a/b) - (a²/bx)] + [(b/a) - (b²/ax)] = 1
(a/b) + (b/a) - (a²/bx) - (b²/ax) = 1
Comun denominador entre: b; a; bx; ax = abx
[a(ax) + b(bx) - a²(a) - b²(b)]/(abx) = 1
[a²x + b²x - a³ - b³]/(abx) = 1
a²x + b²x - a³ - b³ = abx
a²x + b²x - abx = a³ + b³
x(a² - ab + b²) = a³ + b³
X = [a³ + b³]/[a² - ab + b²]
Recordemos que:
[a³ + b³] = (a + b)(a² - ab + b²)
X = [(a + b)(a² - ab + b²)]/[(a² - ab + b²)]
Cancelo (a² - ab + b²)
X = a + b
Rta: X = a + b
Ejecutamos productos.
[(a/b) - (a/b)(a/x)] + [(b/a) - (b/a)(b/x)] = 1
[(a/b) - (a²/bx)] + [(b/a) - (b²/ax)] = 1
(a/b) + (b/a) - (a²/bx) - (b²/ax) = 1
Comun denominador entre: b; a; bx; ax = abx
[a(ax) + b(bx) - a²(a) - b²(b)]/(abx) = 1
[a²x + b²x - a³ - b³]/(abx) = 1
a²x + b²x - a³ - b³ = abx
a²x + b²x - abx = a³ + b³
x(a² - ab + b²) = a³ + b³
X = [a³ + b³]/[a² - ab + b²]
Recordemos que:
[a³ + b³] = (a + b)(a² - ab + b²)
X = [(a + b)(a² - ab + b²)]/[(a² - ab + b²)]
Cancelo (a² - ab + b²)
X = a + b
Rta: X = a + b
Respuesta dada por:
0
Respuesta:
Explicación paso a paso:
a/b)[1 - (a/x)] + (b/a)[1 - (b/x)] = 1
Ejecutamos productos.
[(a/b) - (a/b)(a/x)] + [(b/a) - (b/a)(b/x)] = 1
[(a/b) - (a²/bx)] + [(b/a) - (b²/ax)] = 1
(a/b) + (b/a) - (a²/bx) - (b²/ax) = 1
Comun denominador entre: b; a; bx; ax = abx
[a(ax) + b(bx) - a²(a) - b²(b)]/(abx) = 1
[a²x + b²x - a³ - b³]/(abx) = 1
a²x + b²x - a³ - b³ = abx
a²x + b²x - abx = a³ + b³
x(a² - ab + b²) = a³ + b³
X = [a³ + b³]/[a² - ab + b²]
Preguntas similares
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años