¿Me ayudarían en estas ecuaciones?:

2x^3+1 = 17

3.√(x)+4 = 19

(2x+3)^2 = 81

√(5x-4) = 9

5.(x-2)^3 = 135

4. 3×√(x+7) = 24

Respuestas

Respuesta dada por: JPancho
0
Muchas preguntas en una tarea
Vou a ayudar con 3
Conociendo la metodologia, las otras llevan pocos minutos y dejan mucho aprendizaje

2x^3 + 1 = 17
Se trata de una ecuación cúbica. Tiene 3 raices
                       2x^3 + 1 - 17 = 0
                              2x^3 - 16 = 0
               dividiendo todo por  2
                                  x^3 - 8 = 0
               factorizando

                                 (x−2)(x2+2x+4) = 0
               cada factor debe ser nulo
                                 x - 2 = 0
                                                             x1 = 2
                 
  x^2 + 2x + 4 = 0
                          
x = (- b +/- √Δ)/2a
                                      
Δ = b^2 - 4.a.c
                                           = 2^2 - 4(1)(4)
                                           = - 12
                           x = (- 2 +/- √-12)/2
                               = (- 2 +/- 2√-3)/2
                               = - 1 +/- √3i
                                                           x2 = - 1 - √3i
                                                           x3 = - 1 + √3i
                                                                                     S = {-1-√3i, -1+√3i, 2}
                          

3.√(x)+4 = 19
                         3√x =  19 - 4
                                 = 15
                           √x = 15/3
                           √x = 5
                                         condición de existencia: x ≥ 0
                     elevando todo al cuadrado
                             x = 25 (cumple condición de existencia)
                                                                     S = [25}

(2x+3)^2 = 81 ecuación cuadrática
                   desarrollando el producto notable
                       4x^2 + 12x + 9 = 81
                       4x^2 + 12x - 72 = 0
                   dividiendo todo por 4
                         x^2 + 3x - 18 = 0
                   factorizando
                         (x + 6)(x - 3) = 0
                                     x + 6 = 0
                                                       x1 = - 6
                                     x - 3 = 0
                                                       x2 = 3
                                                                       S = {- 6, 3}

Preguntas similares