Un bloque de madera de masa 2,9 kg, que descansa sobre una superficie horizontal sin fricción, está unido a una barra rígida de longitud 54,7 cm y masa 201,8 g. La barra se articula en el otro extremo. Una bala de masa 5,7 g, que viaja paralela a la superficie horizontal y perpendicular a la barra con rapidez 191,6 m/s, golpea al bloque y queda incrustada en él. ¿Cuál es la velocidad lineal del sistema bala–bloque justo después del choque? Respuesta en m/s.
Respuestas
Respuesta dada por:
3
Estamos en un caso de conservación de momento angular de la barra, es decir que permanece constante.
Datos del enunciado:
Masa bloque: 2.9 kg
Longitud barra: 0.547 m
Masa barra: 0.2018 kg
Masa bala: 0.0057 kg
Rapidez bala: 191.6 m/s
Definimos el momento angular de la partícula respecto de un eje que pasa por O: L = m × v × L
Momento angular del sólido en rotación alrededor de un eje que pasa por O: L= I × ω
Datos del enunciado:
Masa bloque: 2.9 kg
Longitud barra: 0.547 m
Masa barra: 0.2018 kg
Masa bala: 0.0057 kg
Rapidez bala: 191.6 m/s
Definimos el momento angular de la partícula respecto de un eje que pasa por O: L = m × v × L
Momento angular del sólido en rotación alrededor de un eje que pasa por O: L= I × ω
Para la masa después del choque: (M + m) × v × L
Para la barra: ω = V/L e I = 1/3 m' L²
Igualamos el momento angular inicial al final:
m × v × L = I × ω [Pero ω = v/I]
m × v × L = (I cubo + I varilla + I bala) × (V/L) [despejaremos V]
m × v = (M + m) × v × L + 1/3 m' × V
m × v = (M + m + 1/3 m') V
V = (m × v)/(M + m + 1/3 m'), entonces:
V = (0.0057 × 191.6 m/s) / (2.9 + 0.0057+ 1/3 × 0.201)
V = 0.367 m/s
Adjuntos:
Preguntas similares
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años